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Synopsis

A Scattering theory is presented for a non-relativistic system consisting of 
a finite number of particles with local two-body interactions. The behaviour of 
the system is studied from the point of view of the theory of Hilbert space. 
The formalism aims at expressing the scattering of wave-packets in terms of the 
resolvent of the Hamiltonian.

The starting-point is Jauch’s theory of wave-operators, which is summarized. 
It is explained that this theory is particularly well suited for describing multi
channel processes. It permits an unambiguous definition of reaction channels and 
is sufficiently general to discuss the scattering, both elastic and inelastic, of any 
finite number of particles or bound fragments.

In Jauch’s theory, there is a condition on the time development of the system. 
In order that there exist wave-operators, the system must split into mutually 
independent fragments as the time tends to oo or -oo. In the present paper, this 
condition is translated into a condition on the two-body interactions. It is shown 
that for the existence of wave-operators it is sufficient, roughly speaking, if the 
two-body interactions are locally square-integrable and at large distances tend 
to 0 faster than the Coulomb interaction. This result applies to general multi
channel processes.

If the interaction satisfies sufficient conditions, the wave-operators can easily 
be related to the resolvent. This is done with the spectral theory of self-adjoint 
operators. It is found, however, that the theory of the scattering operators still 
meets with practical difficulties. These have to do with repeated limits that cannot 
be interchanged. To obtain workable expressions for the scattering operators, 
some further conditions are imposed upon the interaction. Also, the discussion 
is restricted to wave-packets that satisfy certain smoothness criteria. The scattering 
of smooth wave-packets is described by the limit of a sequence of linear functionals. 
In this sequence, the wave-function plays the part of a test-function. Each functional 
contains the resolvent for complex energies in the neighbourhood of the continuous 
spectrum. The limit refers to the energy tending to real values. The limiting be
haviour is discussed in detail.

For systems with spherically symmetric two-body interactions, particular 
attention is devoted to scattering events in which both in the distant past and 
in the remote future there are only two fragments. For such events, it is shown 
how from the general expression for the scattering of a wave-packet, one can 
extract a scattering matrix the elements of which are functions of a real energy
parameter. Also, a study is made of the scattering of a collimated beam. This 
is not described by a plane wave, but by a statistical mixture of wave-packets. 
For the total scattering intensity to be finite, it is sufficient if the interaction be
tween scattered fragments is locally square-integrable and at large distances tends 
to 0 faster than the inverse distance squared. Under this condition it is possible 
to define the amplitudes for scattering through a fixed angle. For real energies, 
these quantities are discussed in detail. In particular, it is shown how they are 
related to the resolvent and to sums of scattering-matrix elements. In a forth
coming paper the present results will be used to continue the scattering amplitudes 
into the complex plane, and to investigate their analytic properties.
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2.1. Introduction
2.1.1. General outline

In a previous paper with the subtitle “The Green Function” (1), a study was made 
of the resolvent operator for a system consisting of any finite number of particles. 

This operator was considered for complex energies not in the continuous spectrum 
of the Hamiltonian. Under the assumption that in the system there are only square- 
integrable local two-body interactions, it was shown that the resolvent is an integral 
operator the kernel of which can be evaluated explicitly. The kernel in question was 
called the Green function. In the energy plane cut along the real axis from some point 
M to oo, the resolvent is analytic, regular except for possible poles on the real axis. 
If there are poles, these are located at the energies of bound states, the corresponding 
eigenfunctions following from the residues of the resolvent. Since in the cut energy 
plane the resolvent can be evaluated explicitly, the bound states of the system con
sidered have thus been made accessible to further investigation. By contrast, the 
previous paper does not give any information on the structure of the continuous 
spectrum, nor, in fact, does it determine its location. Since obviously there is an 
intimate relationship between the existence of a continuous spectrum and the occur
rence of scattering phenomena, we therefore continue our investigation of finite 
systems of particles with a paper on the theory of scattering.

In a scattering process there is a number of fragments which in the distant 
past were very far apart and consequently behaved as if they were free. In the course 
of time, the fragments approach each other, and a collision lakes place. This may 
cause the fragments to change their velocities. It may also give rise to reactions. After 
the collision there will in any case emerge a number of fragments. In the remote 
future these will be free again. It is the object of the scattering theory, firstly, to say 
what states can occur as initial and final states in a scattering event and, secondly, 
to evaluate the probability for transitions between these states. In the course of years 
numerous papers have been devoted to this subject. However, in none of these did 
we find a rigorous treatment that takes us from first principles to explicit expressions 
for observable quantities related to the continuous spectrum.

The formalism of the present paper has as its starting-point a theory due mainly 
to Jauch (2, 3), which expresses in a precise mathematical form the essential features 
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of a scattering process. Jauch’s theory is concerned with the time development of 
suitably chosen wave-packets, which are required to tend to tree packets as the time 
tends to °o or — =c. The requirement that there should be limits makes it possible to 
define the wave-operators and, subsequently, the scattering operators, which determine 
the transition probabilities. For the simple case of one-channel scattering, this is 
summarized in section 2.2.

It is one of the beautiful features of Jauch’s theory that it makes possible an 
unambiguous description of multi-channel processes. This is explained in section 
2.3. From this section it will become clear that the theory is a considerable improve
ment on the usual heuristic scattering formalism, in which there are always difficulties 
associated with the possibility for reactions to take place. In particular, it is no longer 
necessary to restrict the discussion to processes in which the total scattering system 
is not separated into more than two fragments. Neither need there be an exterior 
region in configuration space in which there is no interaction between the fragments, 
’flic most important improvement, however, is concerned with the channel concept. 
In the usual formalism, reaction channels are defined via a discussion of the wave
function in the external region. In this region an expansion is made in terms of channel 
wave-functions which are, however, not strictly orthogonal. As a result the decom
position into channels is not really unique. If the system is in channel a, this does 
not in general exclude its being in channel b. This ambiguity is completely avoided 
in the formalism to be summarized in section 2.3, the point being that in Jauch’s 
theory one concentrates on the ergodic properties of the system, rather than on its 
asymptotic behaviour in configuration space.

Sections 2.2 and 2.3 are completely formal in the sense that it is simply assumed 
that the properties of the system are such that, as the time tends to <» or — co, the 
wave-function lends to well-behaved limits. This is equivalent to the assumption that 
there exist wave-operators and scattering operators. As it stands this requirement is 
fairly abstract. However, for one-channel problems it was shown by Cook(4), Jauch 
and Zinnes(5), and Kuroda(6) that this point can be traced back to the interaction 
in the system. This is discussed in section 2.4, in which we also treat the multi-channel 
case. It is found that for the existence of the scattering operators it is sufficient, roughly 
speaking, that the interaction between scattered fragments is locally square-integrable 
and at large distances falls oil more rapidly than the Coulomb interaction. For a 
large class of interactions it is shown that the set of states that can occur as initial 
or final states in a scattering event is uniquely determined. This means that within 
the framework of the present formalism there is one and only one way in which 
channels can be defined. The channels are mutually orthogonal, according to 
section 2.3.

In section 2.5 the wave-operators are expressed in terms of the resolvent. This 
is done with the spectral theory developed in section 1.4 of our previous paper(l). 
Since by the previous paper the resolvent can be evaluated explicitly, section 2.5 
makes it possible, in principle, to compute the wave-operators.
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When in section 2.6 we try to extend the methods of section 2.5 to the scattering 
operators, an unexpected difficulty presents itself. There appears a repeated limit 
which in general is completely unmanageable. Il is found, however, that, if the relative 
motion of the scattered fragments and their mutual interaction are what we call 
admissible, one limit can be performed explicitly. There then remains a limit which 
involves the resolvent and essentially refers to the energy of the system approaching 
the continuous spectrum through non-real values. This limit exists owing to lhe fact 
that, as the time tends to co or - æ, the system splits into independent fragments suf
ficiently rapidly. This splitting, in turn, is due to the interaction between the fragments 
decreasing sufficiently rapidly as their distance increases. We thus see that there is 
an intimate relationship between the behaviour of the resolvent in lhe neighbourhood 
of the continuous spectrum, lhe time development of scattered wave-packets, and the 
properties of the interaction. In some of our formulas there is an analogy with the 
work of Lippmann and Schwinger(7) and Gell-Mann and Goldberger(8), but the 
general point of view is entirely different.

The requirement that the interaction and the relative motion of the scattered 
fragments be admissible is discussed in sections 2.6.3 to 2.6.6. For the interaction, 
sufficient conditions are found which are only slightly more restrictive than the 
mere existence of the scattering operators. For the relative motion, wave-functions 
are chosen which in momentum space are smooth and vanish outside bounded re
gions. The more detailed results of lhe present paper all refer to such wave-functions. 
The scattering of smooth wave-packets is described by the limit of a sequence of 
linear functionals. In the terminology of the theory of distributions, the wave-function 
plays the role of the test-function. Each member of lhe sequence contains the resolvent 
for complex energies in the neighbourhood of the continuous spectrum. In the limit 
lhe energy tends to the real axis, as mentioned above. It is obvious that the formalism 
must yield the conservation of energy during the scattering process. This comes out 
in a natural way, without the intermediary of d-functions. Also, there are no nor
malization difficulties.

The formulas of section 2.6 apply to the scattering of any number of fragments. 
It is discussed in section 2.7 that considerable simplifications become possible if we 
restrict ourselves to scattering events in which both in the distant past and in the 
remote future there are only two fragments. For systems with spherically symmetric 
two-body interactions, particular attention is devoted to the scattering of partial waves. 
It is shown how this can be described with the help of a matrix, the elements of which 
are functions of a real energy-parameter. Under suitable conditions Illis c/-matrix is 
unitary and symmetric.

Whereas the q/-matrix refers to one single wave-packet, section 2.8 discusses the 
scattering of what we call a beam. By this we mean a certain statistical mixture of 
wave-packets. By analogy with a plane wave, a beam can be decomposed into a sum 
of partial waves. The requirement that this sum be convergent imposes the restriction 
that, as the distance between scattered fragments increases, their interaction decreases 
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faster than the inverse distance squared. If this condition is fulfilled, it is possible 
to deline the amplitudes for scattering through a fixed angle. These determine the 
cross section. A beam as delined here provides a good description of a collimated 
stream of projectiles. It is, in fact, much more appropriate than a plane wave. Mathe
matically a beam can be handled more easily. Since it consists of a mixture of wave
packets, it is also more acceptable physically than a plane wave.

Qualitatively, the result that there is an qJ -matrix and scattering amplitudes is 
what one expects from more heuristic theories. It must be remarked, however, that 
a correct definition of these quantities requires a careful handling of limits and in
tegrals that cannot be interchanged. In the present treatment an clement of the 3/-matrix 
comes out as the derivative of the limit of a sequence of integrals. A scattering am
plitude is defined as the sum of a series which converges in mean square. With the 
help of section 2.6 the ©/-matrix and the scattering amplitudes are related to the re
solvent. Mathematically this is also a subtle affair.

The insight we have gained into the limiting properties of the resolvent in the 
neighbourhood of the continuous spectrum is very useful for further research. In a 
forthcoming paper it will make it possible to consider the ©/-matrix elements and the 
scattering amplitudes as the boundary values of analytic functions that depend on a 
complex energy. It will be shown that the boundary behaviour is sufficiently smooth 
for these analytic functions to satisfy dispersion relations. Because of the dispersion 
relations, there is also a parameter expansion for the of-matrix. This nicely describes 
the qualitative features of the scattering. In particular, it exhibits resonances against 
a background of direct reactions.

2.1.2. Notation and basic assumptions

In the following our previous paper(1) is denoted by I. We use the same notation. 
Since in I all sections and formulas were given numbers beginning with 1, they can 
simply be referred to by the original numbers.

We recall from I that the present investigation is concerned with systems con
sisting of zi distinguishable particles, the Hamiltonian being derived from

h'(X) - - y 1
“---< 2 III;
i = 1 1 i<j

(2.1.1)

(cf. eq. (1.1.1)). As was the case in I, it is useful to split off the motion of the centre 
of mass. If this is done through the introduction of new coordinates x according to 
eq. (1.2.1), the operator for the relative motion takes the form

//'(x) = - J zl(xz) I- 2 yJ 2 cijxk

1 = 1 i < j \ fc = 1
(2.1.2)

with certain constants c (cf. eq. (1.2.4)).
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It was explained in section 1.2.2 that, under suitable assumptions on the functions 
there is a unique way of extending f/'(x) to a self-adjoint operator in the Hilbert 

space of square-integrable functions of x. This self-adjoint extension is taken as the 
Hamiltonian. Il is denoted by H or //(x). Its domain is denoted by ®(H). If there 
is no interaction, H reduces to the operator Ho with domain ®(/70).

For the Hilbert space of square-integrable functions of x we use the notation 
£2 or £2(x). If / and g are any two functions in £2, the norm of / is denoted by ||/’||, 
the inner product of /’ and g by {g,f},

ll/’ll = (W) = \g(x}f(x)dx. (2.1.3)

It is assumed throughout the present paper that the operator H'(x) is essentially 
self-adjoint, i. e. that it has one and only one self-adjoint extension. This point was 
discussed in great detail by Kato(9). It was shown first that Hq(x) is essentially self- 
adjoint, the domain T(H0) of the self-adjoint extension Ho consisting of all functions 
/(x) in ß2(x) whose Fourier transforms f(k) are such that jÆ|2/’(Æ) belongs to £2(&). 
Next it was shown by Kato that for //'(x) to be essentially self-adjoint, it is sufficient 
if there are constants a and ß, with a < 1 , such that, for every / in ®(7Y0), the quantity 
V^f satisfies

2 IlVi/ll < «Wil + ß\\f\\ (2.1.4)
i < j

(cf. eq. (1.7.14)). If this condition is fulfilled, we have

$(H) - ®(H0), W-W0+2'7m (2.1.5)
i < j

(cf. eq. (1.2.9)). In the present paper it is assumed throughout that eqs. (2.1.4) and 
(2.1.5) are satisfied.

Il follows from the work of Kato(9) and Stummel(IO) that eq. (2.1.4) holds 
true for a large class of interactions. Obviously it is fulfilled whenever Vif is bounded. 
It is also satisfied if

nVjJ(X)]2(l + |X-P|)-1 + frf3X< const. (2.1.6)

for some £ with 0 < £ < 1, and every Y. If this relation holds true, the constant a 
in eq. (2.1.4) may be chosen as close to 0 as we like.

Equation (2.1.6) gives a typical condition on Vtj that is often imposed from 
section 2.4 onwards. In later sections some further restrictions are required. These 
arc indicated as the need arises.
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2.2. The scattering of two particles
2.2.1. The time development of the system

As a simple example of a system in which scattering can lake place, we consider 
two particles the interaction of which depends only on their mutual distance. For 
the Hamiltonian of the relative motion we write II, the corresponding Hamiltonian 
for the system without interaction being denoted by H().

If in the Schrödinger representation the wave-function for the relative motion 
is equal to /+ at time I = 0, it takes the form exp (-iHt)f+ at lime I. Here f+ must 
belong to the Hilbert space £2. The operator exp (- Hit) can most easily be defined 
through the spectral theory given in section 1.4.

We imagine that the time development of the system is such that in the distant 
past the two particles were very far apart, and that they behaved approximately as 
free particles, according to a wave-function exp(-z’Hof)/', with some / in £2. That 
is, we assume that there are functions f+ and f such that

lim e~iHtf+ - e~iH<>t[) = 0 (2.2.1)
t -> — 2C

for every h in \12. A second assumption is that in the course of time the norm of the 
wave-function does not change,

il/+ii = \\f\\- (2.2.2)

It follows from eqs. (2.2.1) and (2.2.2) that

lim \\f+- eiHte~imtf\\2 
t —

- lim [IO2 + ll/'ll2 -
t —

In other words, we assume in fact that there is a function /'+ which is the limit in mean 
of the sequence exp(z7//) exp(-z’H0/)/’,

/+ = l.i.m. eiHte~iHot f. (2.2.4)
t —> — 00

With a view to discussing the behaviour of the system in the remote future, we like
wise assume that there is a funtion /I such that

f- = l.i.m. f. (2.2.5)
t —-C

For future reference it is convenient to define

(2.2.3)

fi(/) - eiHt e-iHut (2.2.6)
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If f is such that &(f)f has a limit as t tends to - oo, it is not obvious that there 
is also a limit as t tends to °o, However, in all practical cases in which we are interested 
in the following, it turns out that if one limit exists, so does the other. For simplicity 
we therefore assume that this is so from the outset. While there is a feeling that this 
point is related to invariance under time reversal (Jauch(2) footnote p. 136), it seems 
that it is not well understood. However this may be, let us denote the set of functions 
/’ for which both limits exist by (£. Then it is not difficult to see that Œ is a closed set. 
For let us choose a sequence fN in (£ which tends in mean to some function / in £2. 
Then we want to prove that for /'the limits (2.2.4) and (2.2.5) exist, so that it belongs 
to (£. For this it is sufficient to show that, given a positive ô, there is a number 7’such that

||ß(s)/'-ß(0/j| < <5 (s,t < -T; s,t > T). (2.2.7)

If eq. (2.2.7) is satisfied, it follows from the fact that the space £2 is closed, that there 
must be a function f+ in £2 such that, as t tends to - <», the sequence Q(t}f tends in 
mean to f+. And similarly for /’_. Hence /’belongs to ©, and (S is closed.

To check eq. (2.2.7), we write

||ß(s)/-fl(0/|| - ll[ß(s) - ß(OJ(/~ In) + [£(«) - Wl
s ii[ß(.o - ß(o](/ - /s)ii + m»)iN - fN±w + iiß(/)/A, - In±\\ (vw

< 2||/- lN\\ + \\û(s)fK - /„J| + ||ß(f)/„ - /-„JI,

fN± being the limit of Q(T)fN as t tends to T <», By choosing first jV sufficiently large, 
next s and t sufficiently small, c. q. sufficiently large, the right-hand side of eq. (2.2.8) 
can be made less than 5. Hence eq. (2.2.7) is satisfied, and our assertion is proved.

In the following the set of functions f+ which are limits in the sense of eq. (2.2.4) 
is denoted by 9t+, the corresponding set of functions /’- is denoted by fR_. Taking 
into account the fact that (£ is closed, it is easily shown that the sets are also closed.

2.2.2. The wave-operators

Since the set (£ is closed, every function h in £2 can uniquely be decomposed 
according to

h = f+g, f c (£, g 1 (£, (2.2.9)

where f/lS means that g belongs to the orthogonal complement of (£. With the help 
of this decomposition, we now introduce operators £?± defined by

£±7i = l.i.m. 72(f)/’. (2.2.10)
/-> Too

These operators are called wave-operators. They are bounded operators with domains 
£2 and ranges The wave-operators have uniquely determined adjoints 72*,  which 
satisfy



12 Nr. 10

(k,G±h} = (P±Å-,7z) (2.2.11)

for every h and k in S2. Il follows from eq. (2.2.11) that = 0 whenever 7zl91±. 
Also, (7f,P^7z) vanishes if Å1G, by eqs. (2.2.10) and (2.2.11). Hence, if &±h does 
not vanish, it belongs to (£.

We now want to show that the operator is the projection operator with 
range S. In the notation of eq. (2.2.9), this statement is equivalent to

(k,tf^Q±h) = (k,f) (2.2.12)

lor every k in £2. If Å-1C, eq. (2.2.12) is obvious. In this case either side vanishes. 
If ke(^, we have

lim |(fi(sX'.-«(0/') - (ß(0*.ß(0/)l  < Hm ||[ß(s)-ü(()]*||||/-||  - 0. [ (2'2'13> 
S,t —> -F s,t -F 2c

Hence in this ease eq. (2.2.12) is also satisfied. It follows that is the projection 
onto C, as we wished lo prove. With this result it is easily seen that the operators 

are likewise projections. Their ranges are 9Î±. Summarizing, we have

ß±ß± = P((£), (2.2.14)

= P(9t±), (2.2.15)

where P(t£) and P(9i±) denote the projections onto (£ and 3î±, respectively.

2.2.3. The intertwining property

If /' belongs to (£, we have

(2.2.16)

Hence exp (z770/)/‘also belongs to (£, and the operators have the intertwining property

ß±C""7' = eiHtQj (/'eS). (2.2.17)

Conversely, if exp (z770/)/'belongs to S, then so does This means that if /1C, we 
also have exp (zT70/)/ l (£. In the latter case either side of eq. (2.2.17) vanishes, so 
that this equation is again satisfied. Since every /’ in £2 can be decomposed into a 
component in (£ and a component orthogonal to (£, it follows that eq. (2.2.17) holds 
in fact for every f in £2. In other words,

(2.2.18)

From eq. (2.2.18) it follows that, if the quantity £?±7z does not vanish, it cannot 
be an eigenfunction of H. For let us assume the contrary, i. e. let us assume that
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eiHtG±h = ékQ±h (2.2.19)

for every / and some real Â. Then

Q±eiHath = Q±eath. (2.2.20)

Since 0 by assumption, /i must have a component f in S. Applying to
both sides of eq. (2.2.20), we obtain

eiHatf = eatf. (2.2.21)
From this it follows that

limllbe'"-1- 1)/'|| = limllbe^- iy|| - ||A/'||. (2.2.22)
«->0 ' z-> o r

Next it follows from the existence of the limit in eq. (2.2.22) that /' belongs to the 
domain of H() (Riesz and Sz.-Nagy(II) section 137). Also,

l.i.m.-be"« - 1)/' = //„/' - V, (2.2.23)
t-> ol‘

so that f is an eigenfunction of 770. But since Ho is known not to have eigenfunctions 
in £2, this result is invalid. Hence the assumption that £?(/i is an eigenfunction of II 
must be incorrect.

Il follows from eq. (2.2.18) that

72±7?O(Â) = 7?(Â)£± (Ind 0), (2.2.24)

where 7? and 7f0 stand for the resolvents of 77 and 77(), respectively. One method of 
proving this relation makes use of the formula

(</.W) =

given bv Stone(12). From eq. (2.2.24) it follows immediately that

F0(/;ß^,/’) = E(l;g,Q±f)

(2.2.25)

(2.2.26)

for every f and g in £2. Here E and EQ are the spectral functions associated with 77 
and 770 which were defined in section 1.4.1. If in eq. (2.2.26) we choose / in (X and 
take g = Q±f, we obtain

~ (2.2.27)

Now since the spectrum of 770 is continuous, the left-hand side of eq. (2.2.27) is a 
continuous function of /. Hence so is the right-hand side. This shows again that Q±f 
cannot be an eigenfunction of 77. As a matter of fact, if II has eigenfunctions in £2,
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eq. (2.2.27) implies thai is orthogonal Io these (cf. Stone(13) theorem 
5.13).

If, given a certain I, there is a function /' in (£ such that I is not an interior point 
of an interval in which = const., then I certainly belongs to the continuous
spectrum of Hq. By eq. (2.2.27), I also belongs to the continuous spectrum of H. 
Hence the continuous spectrum of H contains the set of points / for which there is 
a function /' with the property mentioned. In practical cases, this set consists of all 
points I in the spectrum of Ho. The continuous spectrum of H then contains the spectrum 
of Ho.

For future reference we note that, according to eq. (2.2.26),

û±E0(O - ß(/)ß±, (2.2.28)

E(/) and E0(l) denoting the resolutions of the identity associated with H 
respectively (cf. eq. (1.4.21)). If /'belongs to (£, it follows with eq. (1.4.22)

and Ho,
that

l|û±Eo(D/'ll2 - HWW - (ß±f,E(l)ß±f) 1
- (ßW,Eo(')D - (I.E„(l)f) - ||£0(WII2. 1

(2.2.29)

Hence, if /'belongs to (S, so does E0(T)f, by eq. (2.2.14). Now h"0(/)/' belongs to ^>(Hn) 
(cf. section 1.4.2 and Achieser and Glasmann(14) section 66). If / tends to », the 
function E0(l)f tends in mean to f. This means that, if /' belongs to (S, it can be ap
proximated in mean square by a function which belongs both to (£ and to ®(H0).

If / belongs both to © and to ®(H0), it follows from eqs. (2.2.26) and (1.4.24) that

O& - HQJ. (WM)

With an argument as used in eq. (2.2.29), it is easily shown that in this case Ho/ also 
belongs to (£.

2.2.4. The scattering operator

From the beginning of section 2.2.1 we recall that at time t the wave-function 
in the Schrödinger representation is of the form

(2.2.31)

Now we imagine that in the remote future the system we are considering will behave 
asymptotically as a free system. Let us therefore determine the probability of linding 
it in the state exp(- iHQC)g, where g belongs to (£. This probability is equal to

\(e~iH°tg,e~iHtQ+f)\2. (2.2.32)

If / tends to x, this quantity tends to

lim|(e^e-iH^,ß+/')|2 = |(ß_f/,ß+/')|2 = \(g,Q'tQ+f)\2. (2.2.33)
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Hence the probability for a transition from the state exp(- at / = — co to the
state exp(- iHot)g at / = co is determined by the operator

S = -QÎ_Q+, (2.2.34)

which is called the scattering operator.
Since £?+/’ belongs to 9i+, and Q_g to 9L, it is obvions that there are no transitions 

from /' to g if 9f+ and 9L are orthogonal. More generally, let us imagine that there 
exists a function h+ in 9i+ which is orthogonal to 9L. By the definition of 9f+, there 
must be a function h in (£ such that h+ = Q+h. This function has the property that 
(Q_g,f}+h) vanishes for every g in £2. Hence, if the wave-function takes the form 
exp(- iHot)h at f = - », a situation arises in which there is no possibility for the 
system to become free as t approaches oo. Conversely, if there is a function h_ in 9L 
and orthogonal to 9i+, there is a function h in U such that the wave-function exp(- iHot)h 
cannot occur as the outcome of a scattering process. Since either case seems to be 
pathological, it was required by Jauch (2) that

9\ = 9L. (2.2.35)

2.2.5. Unitarity

The relation (2.2.35) is directly related to the unitarity of the S-operator. As a 
matter of fact, if 9x+ = 9L, it follows from eqs. (2.2.14), (2.2.15), and (2.2.34) that

S*S  = ß*£_£*£ + = £*P(9L)£ + = Æ*P(9Î +)Æ+ = = P((£), ]
SS*  = ß*ß +ß*ß_  = P*P(9f +)ß_ = £*P(9L)ß_  = £*£_  = P(U). J

Hence S can be considered as a unitary operator in (£. In all cases which were in
vestigated explicitly thus far, C was the whole space £2. Hence S was unitary whenever
9i+ = 9L.

It is easily seen from eq. (2.2.36) that for S to be unitary it is not merely sufficient, 
but it is also necessary that 9t+ = 9L. Thus special studies were devoted to this problem 
by Kuroda (6, 15) and Ikebe (16). For the case of two particles, hence three-dimen
sional x, it was shown by Kuroda (6, 15) that S is unitary if the interaction V(x) 
is both integrable and square-integrable. If V(x) is spherically symmetric, it is suf
ficient if there is a positive £ such that Vr(jx|)(l + jx|)~’2+ C is square-integrable (Ku
roda (6)). Ikebe (16) established the unitarity of the S-operator under the assumption 
that V(x) is Holder-continuous except for a finite number of singularities, is square- 
integrable, and as |x| tends to co is of the order 0{\x\~2~,]), with some positive g. 
Under these assumptions he was also able to show that the space 9?+ = 9f_ is the 
orthogonal complement of the space spanned by the eigenfunctions of H, if these 
exist. Hence, under Ikebe’s assumptions on the interaction, every function which is 
orthogonal to the eigenfunctions of H can occur as the wave-function in a scattering 
process. In section 2.2.3 we saw already that in a scattering experiment we never 

(2.2.36)
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gel the eigenfunctions of II. This follows from the result that £?±/' is orthogonal to 
these eigenfunctions (cf. eq. (2.2.27)).

2.2.6. Integral representations of the wave-operators

For future reference we note that it was shown by .Iauch (2) that, if the limits 
(2.2.4) and (2.2.5) exist,

o
l'+ = l.i.m.e f eEtQ{l)dtf,

8 —> 0 J

(2.2.37)
□c

/’_ = l.i.m.e f
«->o J

o

it being understood that £ tends to 0 through positive values.
Since for fixed /' and 7 the quantity (7,72(f)/) is a bounded and continuous 

function of I, the integrals
Tx

T £ f (f/,ß(/)/')<// (2.2.38)

o

be written as

(2.2.39)

such
Tx/ T X \lff, Jr* 7 (2.2.40)£

0

number 7’ such thata

n/;-^(o/'ii (2.2.41)Ô<

oo
[ cnQ(t)dtf \\ - e|| J eBdf[f+ -fi(7)/'l|

_ oc (2.2.42)— oc

whenever / < - 7’, it follows that

defines the integrals in eq. (2.2.37). 
Now if, given a positive ö, there exists

in virtue of the Riesz-Fréchet theorem (Aciiieser and
21), there are bounded operators £?±s, which conveniently

exist and are bounded. Hence,
Glasmann (14) section
mav

Too

f e-£!\Q(/)7/,
o

Tx
f l = T- £

0

By choosing £ sufficiently small, this can be made less than 2(5, say. The first statement 
of eq. (2.2.37) then follows. The second one can be justified similarly.
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2.3. Multi-channel scattering
2.3.1. The channel concept

To discuss the scattering in a system of more than two particles, we consider the 
case that in the distant past the system was split into m fragments which were very 
far apart. In this situation it is convenient to introduce m' sets of internal coordinates 
to describe the motion within the m' fragments that consist of two or more particles, 
x1,x2,. . . < 727), plus a set of tn — 1 three-dimensional coordinates, xzw + 1, . .
x2m-i’ f°r the motion of the fragments with respect to each other. It follows from 
section 1.2.1 that this can be done in such a way that the differential operator for 
the relative kinetic energy of the 777 fragments with respect to each other takes the 
form

To bring out the assumption that in the distant past the 727 fragments were very 
far apart, and that effectively there was no interaction between them, we introduce 
the operator

2m- 1

Ha(x) = - 2 ^(11 * * * * * * Xj) + Aa, (2.3.1)

I11 this picture, Åa plays the role of the intrinsic energy of the 717 fragments. Under 
very general assumptions on the interaction between the fragments, it is shown in 
section 2.4.3 that, for the limit in eq. (2.3.2) to exist, it is necessary that is of the 
form

m'
(2.3.3) 

7 = 1

where the numbers are eigenvalues of the Hamiltonians //(;)(x;) for the internal 
motions of the respective fragments. It is also shown that, if to each in the series 
(2.3.3) there corresponds only one eigenfunction ç?a)(xy), the function fa must be of 
the form

Wl'
/a(x) = n ^(^Wm+l- ■ -*2m-l)- (2.3.4)

7 = 1

If Â(1) is degenerate, with orthonormal eigenfunctions 9?(1)1(x1) and 9?(i)2(x1) say, we 
find it convenient to write IIa = Hb, and to consider separately

Mat.Fys.Skr.Dan.Vid.Selsk. 2, no. 10. 2

J = m + 1

where Xa is a real number to be determined in the course of the following. In the 
space £2(xp. . ., xm> ,xm +1;. . ., x2m_1) the operator Ha(x) has a unique self-adjoint 
extension. This we denote by Ha (cf. the discussion in section 1.7.2). Now the idea 
is that Ha represents the effective energy of the system at time / = - 00. That is, we 
imagine that in the distant past the system behaved according to some wave-function 
exp(-iHaf)fa, and we require the existence of

/«± = l.i.m.e^-^. (2.3.2)
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m'

/a(x) = TT WX/)/’(*>n  + l’- •
y = 2

m'

/b(æ) = (P{I)2(X1) TT 1 > • • •’■x2m-l)-
7 = 2

(2.3.5)

And similarly for more degenerate cases.
If asymptotically the system behaves according to the wave-function exp(- iHat)fa, 

it is said to be in channel a. With the notation outlined in the previous paragraph, 
we have Ha Hb, except possibly if faLfb. The case Ha = Hb, fa 1 fb also covers 
the exceptional situation that Àa can be decomposed into a sum of the form (2.3.3) 
in more than one wav.

2.3.2. The wave-operators

In line with section 2.2.2 we denote the set of functions /a for which the limits 
(2.3.2) exist by (£a, the sets of functions /a± by 9ia±. These sets are all closed. De
composing a general function h in £2 according to

Ia 9 a ’ la*  ’ 9 a -f ’

we define the wave-operators £?a± by

where

l.i.m.X2fl(/)/a

^«(0 eiHte~

(2.3.6)

(2.3.7)

(2.3.8)

In analogy to eqs. (2.2.14) and (2.2.15), we have

^aA± = <)- (2.3.9)

Also,
(2.3.10)

- eiHtGa ± • (2.3.11)

\\ ith trivial changes ol notation, the conclusions which were drawn from the cor
responding equation (2.2.18) apply also in the present case. In particular, if /?« denotes 
the resolvent ol Ha, there is a relation analogous to eq. (2.2.24). The spectrum of 
H contains the spectrum of Ha if, given a point I in the spectrum of Ha, there is a 
function fa in Gesuch that / is not an interior point of an interval in which Ea(l; fa, fa} - 
const. If fa belongs to (Sa, the function Ea(T)la belongs both to and to £>(Ha).

If at time t = - x the system was in the state exp(- iHat)fa, the probability of 
finding it in the state exp(- iHbt)gb at time I = °c is given by

t~>'X
(2.3.12)
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In evaluating this expression in practical cases, it will be necessary to express Hb and 
gb in the coordinate system adapted to Ha and fa, or vice versa. This may give awk
ward formulas, but we shall not bother about that in the following.

Il follows from eq. (2.3.12) that the transitions from channel a to channel b 
are determined by the operator

S,, - + . (2.3.13)

If no transitions are possible.

2.3.3. Orthogonality of the channels

In connection with the foregoing, the question arises whether there is an ambiguity 
in the channel concept in the sense that the statement that the system is in channel 
b does not exclude its being in channel c. Let us assume for a moment that the system 
can be in two channels at the same time. Or rather, let us assume that there is a func
tion which belongs to sJla + , and also to both and By definition, this assump
tion means that there are functions ha,hb, and hc such that

7i = Qa + ha — Qb_hb — Qc_hc.

If we now consider the wave-function exp(-iHC)Qa +ha, we find

liin||ri''<ßa + Aa-e-i"‘‘/li)|| - 0, 

lim||e-iH<ßa+7ia-e-^7ic|| = 0. 
t -> X

According to this result, the wave-function in question would tend to exp(- iHbt)hb, 
and also to exp(-i’Hcf)hc. Hence, at f = », the system would be in two different 
channels. It is clear that the root of this undesirable situation is the idea that there 
is an overlap between the sets and 9tc_. It is therefore important that

+ , (a*b),  (2.3.16)

so that the above ambiguity does not occur. Obviously we do not expect a relation 
of the form Jîa + ± because this would exclude the possibility of transitions from 
one channel to another in the course of time.

Equation (2.3.16) is due to Jauch (3). For the proof it suffices to show that

(^b±9b^a±ta) = 0 (n / b) (2.3.17)

for every fa in (Sa and every gb in (£ft. Now,

|(ßö(/M,I2a(0/a) - (Qb±gb,Qa±fa)\ = \(Qb(t)gb,[^a(t) - Qa±]fa) I 3 
+ (&(0 -ßb±W4±/«)l -< \M\ ll^a(0 -VaÛfaW + WO ^bM ll/all-r ’

(2.3.14)

(2.3.15)

2*
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Since the right-hand side of this relation lends to 0 as / tends to =F oo, it follows that

^b±(Jb’Qa±fa) = lini (72fc(/)#0, £?„(/)/„). (2.3.19)
t _> æ

Hence, by the definition of £?(/),

= Hm (e"iK<7ö,e“/H«7a) = lim (gb, (2.3.2V)
t "F -c / —> X

where the third member is justified by the fad that Ha and Hb commute.
We must now distinguish two cases. Firstly the case that Ha = IIb. Then the 

right-hand side of eq. (2.3.20) vanishes because /a and gb are orthogonal (cf. the 
discussion al the end of section 2.3.1). Hence eq. (2.3.17) is satisfied. Secondly we 
consider the case that Ha Hb. W ith the definition Ha - IIb = K, it is then a question of

lim (g,,, <’ ,K'l„ > (2.3.21)

Now the quantity (zj0,exp(- z7v/)/a) is bounded, and it is known to tend to a limit as 
/ tends to T co, by eq. (2.3.20). From this it follows that we must have

«

lim (gb,e~iKtfa) = lim | f (gb,e~iKsfa)ds. (2.3.22)

0

But, according to one of the ergodic theorems of von Neumann (17), the right-hand 
side of eq. (2.3.22) is equal to (gb,Pfa)> where P is the projection operator onto the 
subspace of £2 spanned by the functions h with exp(-z7<7)7z = h. These functions 
are eigenfunctions of K satisfying Kh = 0 (cf. the argument following eq. (2.2.21)). 
However, it is not difficult to see that K has no eigenfunctions in £2. Hence P is in 
fact the zero operator. Thus the expression (2.3.21) vanishes, and eq. (2.3.17) is 
again satisfied. Taking into account that &b±&a±fa belongs to by eq. (2.2.11), it 
follows that

CM = W.- (2.3.23)

This sellles the orthogonality of the channels. It is not claimed that 1 if 
(i ¥= b. As a matter of fact, a relation of this sort does in general not hold true, nor 
is there a reason why we should want it to be satisfied. Indeed, the functions fa and 
gb are only auxiliary quantities. What counts is the wave-function, which is of the 
form exp( z7//)7?a+/a. The crucial point is that this can be decomposed unambiguously 
into mutually orthogonal components corresponding to the various channels. The 
decomposition is brought about by the projection operators which project
onto the sets 9ib_. The component corresponding to channel b is given by

Q O*  p~iHtD f - O*  0 /’!“ib-:“sb-e ^a + la - c ^b-^b-^a + Ja- (2.3.24)
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In fact, owing to the relation

ïïm\\e~iH>'t^_Qa + /a - e~iHtQb_Q^Qa + fa\\ = 0, (2.3.25)

either side of eq. (2.3.24) tends to exp(- iHbt)&b_Qa + fa as t tends to <». Otherwise 
slated, the component of exp(- iHQQa + fa which at t = co will be in channel b is its 
projection onto It follows from eq. (2.3.11) that the projection operator Qb_Q'b_ 
commutes with exp(- iHt). This means that the decomposition according to channels 
does not depend on the time at which it is made. Also, it is unambiguous, in virtue 
of the orthogonality of the sets 9î&_.

It is often convenient to write the wave-function exp(- iHt^^a+fa as the sum 
of an incident wave plus a scattered wave, the latter taking the form

(2.3.26)

If the scattered wave is decomposed according to channels, it follows with eq. (2.3.1 1) 
that the probability of scattering into channel b is given by

||<(e-^U + /a-^iZ/''7a)l|2 Ä^Ö/all2 (2.3.27)

If / tends lo æ, this tends to

|^_(Pa+-na_)/a||2 = ||(^a-^)/al|2 (2.3.28)

2.3.4. Completeness of the channel description

Since the space £2 is separable and the closed sets are mutually orthogonal, 
the number of channels is finite or dcnumerably infinite. In the former case it is 
obvious that the operators "^b^b±^"b± are projections. In the latter case it can be shown 
that, if N tends to œ, the sequences of projections 2&L ± tend to operators
which are again projections. Indeed, according to Slone’s (13) theorem 2.40, there 
exist projections P±, which may be denoted by ^bP>b±Qb±, such that

lim
N -><x>

2 ^b±^b±
0=1

/'il = o (2.3.29)

for every / in £2. From this result it is obvious that

(.7.2^±^4±/') = 2(^ßfe±ß&±/‘)-
b b

(2.3.30)

The ranges of the two limit-projections are the sets 9i± = 2b ® that is the closed
sets determined by the sums 5R1± + 9i2± + • • • • other words,

- pør±).
b

(2.3.31)
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Now we expect on physical grounds that, if b runs through all channels,

- ß„ + /„. (2.3.32)
b

so that &a + la does not have components which do not correspond Io some channel b. 
Since &a + fa runs through 91«+ when fa runs through (£a, it is clear that, for eq. (2.3.32) 
to be satisfied for every fa in (£a, it is necessary that

91«+ Ç9L. (2.3.33)

On the other hand, in order that every function of the form cxp(- iHat)fa can be 
realized as the result of a scattering event, we must have

^+2 9ï«_. (2.3.34)

Hence, combining eqs. (2.3.33) and (2.3.34), we expect that

9î+ = 9L. (2.3.35)

This is a generalization of eq. (2.2.35).
It is not known at present if this relation holds true in practical cases. There 

is no reason to believe that it does not. But only in one fairly special multi-channel 
example has it been possible to check it (18, 19). For the general case of a system 
of n particles with two-body interactions depending only on the distances between 
the particles, no methods for investigating this problem seem to be known.

2.3.5. Unitarity

In the multi-channel case there is a connection between the relation (2.3.35) 
and unitarity in the following sense. Let § be the set of all column-matrices / = {/a} 
which have a function fa € (£a in row a, with 2«||/«H2 < 00 • If the inner product is 
defined by

W) - 2Oa>/«). (2.3.36)
a

and if addition and multiplication by a constant are defined in the 
is a Hilbert space. We now consider the operator-matrix oJ which 
according to

natural way, V) 
transforms {/„}

(2.3.37)

In case the number ol channels is infinite, there is a convergence problem involved 
in this equation. However, in virtue of eqs. (2.3.17) and (2.3.9),

2 ßo+ÄII2 - 2 - 2 HAH2-
b = M b = M b = M

(2.3.38)
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If M and N tend to <x, this tends to 0, by the assumption that Ta||/J|2 converges. 
Hence the quantity 2&Li^&+/b tends in mean to a function in £2, which we denote 
by ^bQb+fb. Applying the operator to this function, we obtain a function in (£a 
(cf. the discussion following eq. (2.2.11)). Also, since £*_  is bounded and therefore 
continuous,

2 + (2.3.39)
b N b = 1 b

This defines the third member of eq. (2.3.37) for the case of an infinite number of 
channels. It follows that in this expression the function in row a belongs to &a.

As regards the norm of off we have

(c//,c//) “ 2(^b-2^c + /c’^b-2^a + /a )

b c al (2.3.40)
= (2ßc + /c,Pm2ßa + /a\ < ||2ßa + /aH2 = 211/all2 <

' c a ! a a

Hence of is a bounded operator in £).
In the above argument the sign of equality applies if and only if the relation 

(2.3.33) holds true for every a. In this case we have

(oÇ,o//) = [^^c+gc,^a+l'a\ = 2(9aJa) = (s,f), (2.3.41)
\ c a la

which is equivalent to of*  of = of ff denoting the unit matrix.
The adjoint operator o'*  satisfies

(X’W) - (*<//)  - 21^,2^-Û^/i.)- (2.3.42)

This can easily be transformed into

(=/*«./)  - 2(^+2^-</../»). (2.3.43)

from which it follows that

ov-i - 2(ß:+2fi«-9«.ß:+2^-/-;v
b a c ’

Hence we obtain 

(2.3.44)

(2.3.45)

if and only if eq. (2.3.34) holds true for every a. Summarizing, the unitarity relations 
of*  of = ff and q/g/*  = c7 are satisfied if and only if eq. (2.3.35) is fulfilled.

To avoid confusion, we remark that the matrix of does not occur in Jauch’s 
paper (3). In particular, it is not the quantity Jauch denotes by S. Although there 
is a certain analogy between the present q/ -matrix and the operator S discussed in 
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sections 2.2.4 and 2.2.5, it must be observed that there does not seem to be a sensible 
way of writing cJ as the product of a matrix times a matrix £?+ in such a way that 
the £?-matrices are limits of suitable lime-dependent matrices which involve Hamil
tonians.

2.3.6. Conjugation and symmetry

For the systems in which we are interested in the present paper, the relations 
(2.3.33) and (2.3.34) are not independent. This is due to the fact that there is an 
operator of conjugation C,

(Cg.Cn - C'f-f, (2.3.46)
such that

CHf = HCf CHaf = HaCf (2.ZAT)

for every /' in ®(H), or every /' in T(7ïœ), as the case may be. Indeed, if C is defined 
by the relation C/'(x) = ]{x) for every /'in £2, then eqs. (2.3.46) and (2.3.47) are satisfied.

It follows from eq. (2.3.47) that

/?(X) = CR(Å)C (2.3.48)

(Achieseb and Glasmann (14) section 45). Hence, if /'and g are any two functions 
in £2, eq. (1.4.28) yields

(g,CeiHtf) = . lim lim f e_wZ([/?(tz + z0 - 7?(zz - z‘0]/', C(/)(/zz
2ttz cz±_>±ae C->o^

i/+

= lim lim f e“l“^(z7,[/?(zz + z’C) - 7?(zz - z‘0]C/')dzz = {g,e~lHtCf}.

Since in this relation /' and g are arbitrary,

(2.3.49)

iHt e~iHtc (2.3.50)

Now let g be any function in 9ia + . Then there is a function fa in (£a such that

lim \\g - eiHte iHatfa\\ = 0- 
t —> — X

(2.3.51)

But from this it follows that

limllQ/ - = 0.
t —X

(2.3.52)

Hence, if g belongs to 91a + , then Cg belongs to 9t_. More generally, if g belongs to 
91+, then Cg belongs to 91-, and vice versa.

Let us now assume that eq. (2.3.33) holds true for every a. Then, if g belongs 
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to 3Î+, il also belongs to SR-. We know already that, if h is any function in 9Î-, the 
function Ch belongs to SJJ+. If eq. (2.3.33) is satisfied, it follows that Ch also belongs 
to 91-. Hence h belongs to 9f+. But this means that 9i Ç 9Î+, i. e. that eq. (2.3.34) 
holds true. We thus see that in problems which admit a conjugation, eq. (2.3.34) is 
a consequence of eq. (2.3.33). Conversely, eq. (2.3.33) is a consequence of eq. (2.3.34).

If channel a is not degenerate, it follows unambiguously from eq. (2.3.52) that

«W« - (2.3.53)

If there are degenerate channels a,b,. . . with Ha = Hb = ..., the function Cfa does 
not necessarily belong to (£a. However, by an appropriate choice of the channels, 
there will in many cases be pairs of channels a,a', with Ha = Ha., such that the con
jugation C transforms a function /a in (£a into a function in (£a■, a function fa. in 
into a function in (£a. If this is so, we have

OU-W.. (2.3.54)

In the matrix notation of the previous section we now define

<Sf - &{f„} - (2.3.55)

After some rearrangements this yields

(s, ©=/*(?/)  = -2(.Ct« ^«-^+Cgb') I
a,b ’. f2 3 561

- 2(Cö6 + Q/t.,cß„- 2(.'/!>•.ß'L^+/«') - 
a,b a,b J

It is appropriate to call the transpose of oJ. In this sense we can say that the
transpose ofc/ is equal to of, hence thatc/ is symmetric with respect to the conjugation Q.

2.3.7. The optical theorem

For future reference we want to say a few words about the optical theorem and 
its connection with the unitarity of the S-operator (cf. Messiah (20) ch. XIX, section 
31). In its simplest form, the optical theorem gives a relation between the total intensity 
scattered from any particular channel, and the amplitude for scattering into the 
channel itself. In the one-channel case, one usually argues as follows.

In the Schrödinger representation the scattered wave has the form

- eCiHotf. (2.3.57)

In the interaction representation it is

(2.3.58)

As t tends to °o, this is supposed to tend to
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- /' = OLQ+f- /' = Sf- /', (2.3.59)

a relation which in fact only holds true if 5 9Î+. Now if S:':S = 1,

Il[-S - IJ/'II2 - IIA’/'II2 <- I7II2 - (-V.7) ” (/■ V) - 2Re(/,[1 S\f ). (2.3.60)

Hence one expects that, as I tends to oo, the intensity of the scattered wave tends to 
the right-hand side of eq. (2.3.60). If this is confirmed by experiments, it might be 
taken to indicate that S*S  = 1, hence that 31-2 9?+. But such a conclusion would 
be premature. For what one observes experimentally is the intensity at a very large 
but finite time t. This is

\\e~iHtQ+f -e~iHaf\\2 = ||p+y (2.3.61)

If I tends lo co, the intensity tends to

||ß+f - I2 - 2||/II2-(£+/■.£-/■) (ß-f.ä+f) - 2Re(/l [1 - S]f). (2.3.62)

Hence there is a limit of the form (2.3.62) irrespective as to whether 5 is unitary. 
In obtaining this result, the crucial point is that the intensity is determined first, 

the limit next. This corresponds to the experimental situation. In a multi-channel 
problem, it is in general not even possible to determine the limit first. For the quantity

(2.3.63)

does in general not tend to a limit. Hence there is no multi-channel analogue to eq. 
(2.3.59). At the same time, the intensity of the wave scattered from channel a is
given by

(2.3.64)

If / tends to <x., this tends to

,7 2 = 2Re(/0,[l -Soo]/„), (2.3.65)

analogously to eq. (2.3.62).
With the methods of section 2.3.4, it is easily checked that

2\\(sba ~ öba)fa\\2 = 2 Be(4, [ 1 - \ J/a) (2.3.66)
b

if and only if 9i_ 2 9xa + . Hence it is only under this condition that the total scattering 
intensify is the sum of the intensities scattered into the separate channels. If eq. (2.3.66) 
holds frue for every a, we have

||[=/'-Wl|2 - 2Re(/;[^-c7]/). (2.3.67)



Nr. 10 27

This is the multi-channel analogue of eq. (2.3.60). It is the point of the present section 
that in this expression it is the right-hand side which is simply related to the total 
scattering intensity, rather than the left-hand side, as one might be inclined to 
think.

It is shown in section 2.8.9 how in special cases the intensity of the scattered 
wave is connected with the forward scattering amplitude.

2.4. The existence of the wave-operators
2.4.1. A general condition

For the remaining part of the present investigation, we restrict ourselves ex
plicitly to the class of 7i-particle systems described in section 2.1.2. For this class we 
first find sufficient conditions on the interaction under which there exist wave-operators. 
The method for obtaining such conditions is mainly due to Jauch and Zinnes (5). 
However, because we have restricted ourselves from the outset to interactions satis
fying eq. (2.1.5), we need only a simplified version of the argument of these authors.

Let us observe first of all that, if we want to show that there is a limit of the 
form (2.3.2) for all functions /a in a certain closed set (£a, it suffices to check the 
existence of the limit for the functions /a in a set which is everywhere dense in 
(£a. The result for the closed set (£a then follows with the reasoning given in section
2.2.1. It also follows from that section that it is in fact sufficient to show that, for 
every fa in (£a and every positive ô, there is a number T such that

llßa(s)/«-ß«(')/«ll < <5 GO < > T). (2.4.1)

Here T may depend on fa.
Let us now imagine that we want to establish eq. (2.4.1) for a function fa in 

®(//0). If fa belongs to ®(H0), so does exp(- iHat)fa, since Ha commutes with Ho. 
The function exp(- iHaf)fa then also belongs to &(7¥), by eq. (2.1.5). Owing to this, 
we have

lim + T)e_i7/"(* + T> - fa\\ = 0 (2.4.2)
T —> 0 T

(Riesz and Sz.-Nagy (11) section 137). Hence, for every g in

(2.4.3)

t

(y, [ßo(() - 42„(S)]/„) - .'"“V - W.]e ‘"““/0)</u. (2.4.4)

'fhe particular choice g = [£?a(/) - £?a(s)]/a yields



28 Nr. 10

Hence, if /a belongs to T(H0), a sufficient condition for eq. (2.4.1) to be satisfied is

(2.4.6)

2.4.2. Sufficient conditions on the interaction

Using the notation of section 2.3.1, we proceed to derive sufficient conditions 
on the functions Vtj under which eq. (2.4.0) is satisfied for a suitable set of functions 
fa. For the Hamiltonian II we write

m'
H 2 ' Ha(xm + 1 » • • ■ > x2m -1) — ^a+2^ pq(xl > • • • > x2m -1)1 (2.4.7)

7 = 1 p,q

We recall that m denotes the number of fragments into which the system is split 
when it is in channel a. The operators II^(xj) are the Hamiltonians of the in frag
ments which consist of at least two particles each. The symbol Ha(xm + 1,. . ■ ,x2m_1) 
stands for the operator Ha defined in section 2.3.1. From the meaning of the various 
quantities involved it is obvious that the summation with respect to p and q must 
include only interactions between particles belonging to different fragments.

Let us now consider a particular term Vpq. In general, this depends on xm + 1,. . ., 
x2w-i- On the other hand, as regards the coordinates xlt. . .,xm> it depends only on 
the internal coordinates of the fragments to which the particles p and 7 belong. Let 
us denote these by x?-(p) and x;(ç). Furthermore, let us recall that, if fragment /(p) 
consists of iq-(p) particles, the coordinate Xj(J3) has iq(J3) - 1 three-dimensional com
ponents. If these are denoted by xJ(p) r, the corresponding components of xJ(Q) by 
Xj(ç).s, function Vpq in question is of the form

/ 2?n - 1

t pr/fAl > ' • •’X27/z-1) = pç 2(A XJ(p),r +2f4X7(Q),s * 2 Cj Xj • (2.4.8)
r s 7 = m + 1

Here it will be understood that, if fragment ,/(p) consists of only one particle, the 
term with Xj(J?) may simply be dropped from eq. (2.4.8).

Il is an essential point that at least one of the constants c; does not vanish. If 
in particular ch 0, it is convenient to write symbolically

I pg(Xi,. . . ,x2m_i) = Vpq(cxh + dx;^A) (m + 1 < Ji < 2m 1). (2.4.9)

In the following the quantity |xA| is denoted by xh, and similarly for other vectors.
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We now study the integral (2.4.6) for functions of the general product-form 
given by eq. (2.3.4). In line with the previous section, we restrict the function f(xm + 1, 
. . -,x2m_1) of eq. (2.3.4) to the set (S consisting of all linear combinations of functions

2m-1

/XXm + l” ' ”X2m-l) = IT fy,(xj) (2.4.10)
j = m + 1

the Fourier transforms of which are of the form

2m- 1 2m - 1IT fyXfy) = TT [Å-nÅ-y2Åq3exp(--/Ær^.)]. (2.4.11)
7=rø + l J j = m + 1

In this expression kj1,kj2,kj3 are the three components of the vector Åq. The symbol 
kj stands for \kj\. The vector is a parameter the three components of which may 
take any finite values. With a view to one-channel scattering, the set of functions © 
was introduced by Kuroda (6). It follows from Wiener’s theorem on the closure of 
the translations of a function in £2 that © is dense in the space £2(xm + 1,. . • ,x2m_1) 
(Wiener (21) section 15). More precisely, given a function /(* rø + 1, • • • ,*2m-i)  *n ~2 
and a positive d, there is an integer A, a set of constants r/a and a set of vectors .y(a) 
such that

A
11/(xm + 1 » • • •>x2m — l) ~ 2 (l<x/y(a)(xm +1’' • ’»x2m —1)11 ' (2.4.12)

a = 1

It is obvious that all functions in © belong to ®(H0(xw + 1,. . -,x2m_1)). Further
more, since çq^Xj) is an eigenfunction of /7(J)(xj), it belongs to ®(//(J)(x;)). Hence, 
by the assumption that eq. (2.1.5) is satisfied, it belongs to ®(/70(xj)). From this it 
is easily seen that, if fa is equal to JJ/L lT’mC*;)  times a function in it belongs to 
'2)(/f0(x1,. . . ,xm/ ,xm + 1,. . • ,x2m_1)). In other words, all the functions fa we consider 
in the present context belong to 2>(Z/0). They can therefore be used in the argument 
of the previous section.

Owing to our particular choice for the functions fa, the study of eq. (2.4.6) 
reduces to a study of expressions of the form

m' 2m — 1

vpq(cxh + TI IT [exp[zJ(xJ)f]/5, (x;)]||t/f. (2.4.13)
j = 1 j = m + 1

If these are finite, it follows that there exist wave-operators £?a±, the closed sets 
containing all functions of the form (2.3.4), where now /'(x.m + 1,. . . ,x2m_1) may be 
any square-integrable function of its arguments.

With eq. (2.4.11) it is not difficult to evaluate exp[z‘J(xj)/]/5, (xj) explicitly. 
This was done by Kuroda (6), who showed that

J
— X

exp[zZl(x;)/]/y(x;)| < const.
\xj -^l2’

4(1 + /2)
(2.4.14)
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From this it follows thai, if C is in the interval 0 < £ 1 , we may write

\exp[i/i(xj')t]fy(xJ)\ < const.(1 4 /2) 2 4^(1 4 |cx; - cyj) 2 + 2 (2.4.15)

c being the constant used in eqs. (2.4.9) and (2.4.13).
Lei us now assume that there is a C with 0 < £ < 1 such that

Wcxa + f/x;^/?')9?G(ï>))(x7(p))93(7(Ç))(xj(ç))l2O + k‘xfc - cyh\r1 + ^fxj(p)({xj(q)(lxh < (2.4.16)

where M(yfl) is finite for every finite yft, and independent of the coordinates Xj on 
which the integral on the left may still depend. In evaluating the norm in eq. (2.4.13), 
it is then convenient to perforin the integrations with respect to xj(])) ,xj(q), and xh 
first. In an obvious notation, this yields

2m — 1

2m — 1
3 = 1

m’

IT
3 = 1

1 ^3(P),3(Q)

< const. [M(ja)]2(1
(2.4.17)

Hence in eq. (2.4.13) the integral with respect to t converges. From this it follows 
that there exist wave-operators £?a± whenever eqs. (2.4.16) and (2.1.5) are satisfied.

In obtaining this result, it was tacitly assumed that the fragments j(p) and /(g) 
consist of al least two particles each. If this is not so, we simply omit, say, (x;(p)) 
and the integration with respect to x;(p) from eq. (2.4.16), and the argument can be 
carried through essentially unchanged.

In the case of scattering of only two fragments, xh must necessarily be x3. There 
is no coordinate x; on which the integral in eq. (2.4.16) might depend. Now for y3 = (), 
the condition (2.4.16) implies

+ 2<s-X2,S + C3X3>95(1)(X1>(2)(X2)|2(1

s
c3| .r3) 1 + dx± dx2 dx3 < M. (2.4.18)

If this holds true, it follows from the inequality

(1 i )c3x3 c3^3l)“1 + : < (1 I |c3|x3r1 + ^(l + |c3|y3)1_C (2.4.19)

that eq. (2.4.16) is also satisfied for general vectors y3, with

J/(^3) M(1 + |c3|y3)1-^ (2.4.20)

It is true that M(y3) is not bounded uniformly in z/3, but this does not matter. For 
in using functions fy(x) according to eq. (2.4.12), we can always restrict ourselves 
to a finite number of bounded vectors y3. Hence for two-fragment channels the sim
plified equation (2.4.18) already gives a sufficient condition for the existence of wave
operators.
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In scattering problems in which three or more fragments are involved, Vpq 
depends in general not only on xh, but also on one or more of the remaining vectors 
xwl + 1,. • Then the condition that there must be a bound Af^) independent
of xrn + 1,. . ■,x2m_1 becomes significant. It implies in fact thatM(jÄ) must be independent 
of yh. Conversely, if Af(,yA) is independent of yA, it follows that it cannot depend on 
any Xj either. It is therefore convenient to demand simply that ecp (2.4.16) be satisfied 
by a constant M = M^y^.

For eq. (2.4.16) to hold true it is obviously sufficient if

J [ VM(*)] 2( 1 + \X-Y\)-1 + id3X < const. (2.4.21)

for some £ with 0 < £ < 1, and every Y. We recall that a relation of this form was 
already discussed at the end of section 2.1.2 in connection with the Hamiltonian being 
self-adjoint. Il is clearly fulfilled if Vpq(X) belongs to £'2(X). More generally, for eq. 
(2.4.21) to hold true it is sufficient if there are positive constants /? and rj such that

f [Vps(X)]2d8X < », I< const*- 1”' (*>«).  (2.4.22)

X <R

If r/ > eq. (2.4.22) implies that Vpq(X) belongs to £2(X). If 0 < T] < 4, it is con
venient to choose in eq. (2.4.21) £ = >/• It is then a question of

[V^(X)]2(1 + |X- y|)“1 + 7h/3X+const. J X~2_2z?(l + X - Y\)~1 + rld3X, (2.4.23) 

X <R X >R

which is bounded uniformly in Y in virtue of Holder’s inequality (Burkill (22) sec
tion 5.6). Hence, roughly speaking, it is sufficient if Vpq is locally square-integrable 
and falls off more rapidly than the Coulomb interaction. This is a generalization of 
the multi-channel result due to Hack (23), according to which it is sufficient if Vpq 
is square-integrable.

As for the scattering of two particles without internal coordinates, it is suffi
cient if

j[rw(X)]2(l +X)"1 + f</3* < « (2.4.24)

for some £ with 0 < £ < 1. This condition was found by Kuroda (6). It is a special 
case of eq. (2.4.18).

2.4.3. The set of asymptotic wave-functions

It follows from the previous section that, if the interaction satisfies suitable 
conditions, there exist wave-operators &a±. The set (£a of asymptotic wave-functions 
fa contains all functions of the form (2.3.4), where f(xm + l>. . •,x2m-1) may he any 
square-integrable function of its arguments. Under the assumption that
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J[Vm(X)]2(1 + \X- Y\y3 + td3X < const. (2.4.25)

for some positive C, uniformly in Y, we now show that is not larger than the set 
of wave-functions of the form (2.3.4). The assumption (2.4.25) is very mild. Indeed, 
it is satisfied whenever Vpq(X) is locally square-integrable and of the order O(.Y^'() 
as A" tends to æ, with some positive r/. It is much less stringent than the condition 
(2.4.21) for the existence of the wave-operators Qa±. In the course of this section it 
will become clear that, if the operator H'a(x) is restricted to the general form (2.3.1), 
with some real Xa, there are not more channels than we have considered thus far.

To prove our assertion, it is sufficient to show that, if l'a belongs to and to ®(H0), 
Ea(T)fa is of the form (2.3.4) for every real /, Ea(l) denoting the resolution of the 
identity associated with Ha. Now if fa belongs to so does HaEa(T)fa, by the end 
of section 2.2.3. Hence

(2.4.26)

owing to eq. (2.2.30). Also, if R stands for the resolvent of H, the operator R(ß)H 
is bounded whenever // is not real. Therefore

lim - 0- (2.4.27)

Combining this with the previous equation yields

lim - <1. (2.4.28)

Hence, in view of eq. (2.4.7) and the fact that fa belongs to T(//o),

lim ||7?(/z)
t -> T oo

m'
1 W -

i = 1
2 pqCXl ’ ’

P,q
0. (2.4.29)

Using the symbolic notation of eq. (2.4.9), we now show that

lim \\R(^)Vpq(cxh + dXj iH'lt Ea(l)fa\\ = 0. (2.4.30)

Since R(ß)Vpq is a bounded operator, by eqs. (2.1.4) and (2.1.5), it is sufficient to 
prove that there is a set of functions /' in T(H0) which is dense in £2 and such that

lim \\R(fi)Vpq(cxh +dXj^^^^/'W = 0 (2.4.31)

for every /' in the set. Let us therefore consider the set consisting of all linear com
binations of functions of the form

2 m -1
. .,xm,,xm + 1>. . .,x2m_1) g(x},. .-,xm/) n L.(x;), (2.4.32)

j = m + 1 
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where g is any function in £2(x1,. . . ,xm-) and fy^Xj) is the function introduced in 
eq. (2.4.10). This set has a subset in ®(H0) which is dense in £2. If 0 < £ < 1,

|exp[id(xA)/]/yft(xA)l < const.(1 + Z2)"K(1 + |cxA - cyA|)_5 + ^, (2.4.33)

by eq. (2.4.14). Hence, in view of eq. (2.4.25),

Me«» + ..... ■ <x2m — 1

< const.(1 +/2)
2m — 1 a

xm. IT ll/v.(*))llx.  + dx;^A.)]2(l + |cxA
j = m + l J 3 J
jth

- const.(1 + /2) •

cyA|) 3+CdxA
(2.4.34)

From this it is obvious that eq. (2.4.31) holds true for every /'in the set under discus
sion, and also for every f in ®(H0).

Since /?0(/z)(//-/0 is a bounded operator, again by eq. (2.1.5), it now follows 
from eq. (2.4.29) that

lim ||B0(/z)
m'

2 H(/)<Xj) -
i = 1

0. (2.4.35)

Hence, since Ha commutes both with H(^(xj) and with 7?0(//,),

from which it is obvious that

m'

24 = 1
- K Ea(l)fa 0.

(2.4.36)

(2.4.37)

This equation can only be fulfilled if Åa is of the form given in eq. (2.3.3). Also, if 
the eigenvalues are not degenerate, Ea(T)fa must be of the form (2.3.4). In the 
case of degenerate eigenvalues, Ea(T) might be a linear combination of functions of 
the form (2.3.4). But if we then further specify the channel concept as was explained 
in eq. (2.3.5), the functions Ea(T)fa for the various channels a with the same Xa are 
again restricted to the form (2.3.4). Since Ea(l)fa tends to fa if I tends to <», the function 
fa must also be of the form (2.3.4). Hence we may conclude that the set (Sa is not 
larger than the set of functions of the form (2.3.4). Since by the previous section it 
is not smaller, it follows that (£a must be equal to the set (2.3.4). This result holds 
true whenever eqs. (2.1.5), (2.4.25), and the general sufficient condition (2.4.16) are 
fulfilled. If we restrict the operators Ha(x) to the general form of eq. (2.3.1), there 
are’no channels besides the ones we have considered in the foregoing.
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2.4.4. The continuous spectrum

Now that we can use the theory of wave-operators, we can justify the statement 
of section 1.7.6 concerning the continuous spectrum of the Hamiltonian H(w) for a 
system consisting of zz particles with square-integrable two-bodv interactions. In 
section 1.7.6 we considered a splitting of the system into fragments of zq and n2 par
ticles (zq + n2 = n). The lower bounds of the spectra of and //(W2> were denoted 
by /1(W1) and Z(7h), respectively. It was asserted that the continuous spectrum of IIw 
runs from to oc, with

= min(H(W1) + (nltn2 > 2, zq + n2 = n), (2.4.38)

the minimum being taken with respect to all possible splittings.
According to paper I, is not smaller than the minimum in eq. (2.4.38). 

To justify our assertion, we now show that M(n} is not larger either. The proof is 
based on the result of section 2.3.2, according to which the continuous spectrum of 
H contains the spectrum of Ha if, given a point I in the spectrum of Ha, there is a 
function fa in &a such that I is not an interior point of an interval in which Ea(l‘,fa,fa') = 
const. It is obvious that this condition is fulfilled for all channels considered in this 
paper. Indeed, Ha is nothing but Ha(xm+lt. . . ,x2m_1) + Åa, and fa may contain any 
function in £2(xm + 1,. . . ,x2m_1) as a factor.

For the purpose of the present section, it is convenient to call a splitting which 
yields the minimum in eq. (2.4.38) a minimum-splitting. It is also convenient to 
define /1(1) = 0, and to drop the restriction zq,z?2 > 2. This formally makes 
equal to a quantity of the form zl<W1) + zf(”2).

Let us now consider a minimum-splitting into zq and zq particles. The simplest 
situation arises if /1(W1) and Z(”2) are the eigenvalues of the bound states 9?(1)(x1) 
and <p(2)(x2), respectively. Then it is useful to consider the scattering of two fragments 
in these bound states, the Hamiltonian Ha taking the form //0(x3) + 4(M1) + A 
From the fact that the spectrum of this Hamiltonian Ha runs from A(ni) + A(n-} to 
», it follows that M(n) cannot exceed Combining this with the result
that M(n) is not less than the minimum in eq. (2.4.38), we see that eq. (2.4.38) is 
fulfilled.

To cover the case that A(7ll) and Z(ns) do not both correspond to bound states, 
we proceed by induction. We first consider the scattering of two particles. For this 
Ha = H0(x1). Hence the continuous spectrum of //(2) coincides with the spectrum of 
Hq. Since this runs from 0 to co, it follows that A/(2) = 0. Formally we have AH2) 
/1(1) + Z(1), hence eq. (2.4.38) holds true for n = 2.

As our next step we consider a minimum-splitting for three particles. This in
volves a lower bound /1(2) which is equal either to 0 or to the eigenvalue of a bound 
state 9?(1)(x1). In the latter case the choice IIa = H0(x2) + H(2), corresponding to the 
scattering of the third particle by the bound fragment, tells us that eq. (2.4.38) is 
fulfilled. In case /1(2) = 0 we write vl(2) = /1(1) -I A(1), and by considering the scat
tering of three unbound particles, Ha = H0(xl, x2), we obtain eq. (2.4.38) again.
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Lei us now assume that relations of the form (2.4.38) have been proved for 
2,3,..., 71-1 particles. To establish the desired result for n particles, we consider 
again a minimum-splitting into n1 and 772 particles. If n± > 2 and A(/ll) is not the 
eigenvalue of a bound state, A(Hl} must belong to the continuous spectrum of As 
a matter of fact, it must then be equal to M(ni\ since by definition it is the lower 
bound of the spectrum of H{n'\ Hence, bv our assumption, there is a minimum
splitting

A(n<) = A(nn) + A(nl2) (nn + 7112 = 77x). (2.4.39)

If n u > * and the quantity A(tlli) is not the eigenvalue of a bound slate, the fragment 
consisting of particles is split further. And so on. In this way we finally obtain 
a decomposition of the form

m' / m' \
A(n,) + A(th) = + (ni - m')/l(1) I 777-111' = n- 2 n'j > (2.4.40)

y = i \ / - i /

each A(nJ) being the eigenvalue of a bound state ç>(;)(xj). If we now consider the 
scattering problem in which in the distant past the system was split into in' bound 
fragments in eigenstates ç^fxy), plus in -in' single unbound particles, hence

wz'
= H0(xm+1,. . . ,x2m_1) + 2 bl(w?, (2.4.41)

i = 1
we sec that

nz'
d/W = 2 A(nJj = A(7ll) +A(nt), (2.4.42)

i = i
as we wished to prove.

2.5. The wave-operators and the resolvent
2.5.1. The spectral resolution

Under the assumption that the interaction is such that there exist wave-operators 
f2a±, we proceed to express the quantities {g,^a±!a) in terms of the resolvent of the 
Hamiltonian II, which is denoted by R. The resolvent corresponding to IIa is denoted 
by Ra, the resolution of the identity by Ea. In the following g may be any function 
in £2, the function fa is restricted to the form (2.3.4).

Since Ea(K2}fa belongs to 2)(H0), it is convenient to consider the relation

m'
fa(x) = l.i.m.Ea(/<2)/a(x) = nWxj)Li-m-Ea(/<2)/’(x/« + i’-• -’^zn-i)- (2.5.1)

7£ X 1 = 1 X X

Corresponding to this we have

(fb^ai/a) = (2.5.2)
7<->x

3*
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Remembering eq. (2.2.37), we now write

(S.û.±/a) -

Toe

(2.5.3)

where the limit-symbol means that

lim lim = lim lim.
Æ~>x £ -> 0 £->0 Æ->oo

(2.5.4)

Since Fa(/v2)/a belongs to T(W0), it follows from arguments such as used in section 
2.4.1 that in eq. (2.5.3) we may integrate by parts, with the result that

(<74ßa ± - 1 J/«) = *{ lim Hm} fe - H a]e ^E^K^f^dl. (2.5.5)
Æ -> x £-> 0 v

0

For convenience we now define

m'
a ~ ~ S -^(/)(*y)  ~ Ha(xm + 1 ’ • • • » x2m- 1) = 2 ^pq(xl > • • • > x2m-l) (2.5.6)

7 = 1 p,q

(cf. eq. (2.4.7)). Acting on functions Ea{K2)fa, the operator Va has the same effect 
as the operator H Ha.

For the following it is slightly inconvenient that the quantity Vaexp(- iHt)g need 
not belong to £2. However, if x is any non-real number, we may write

- (g,eiHtVa[H Va - X]^[H - Va - X^^E^K2^ |

- - r„ - - ;.7-:„rÆ2>/„). j (2'5-7)
Here [H-Va-X]~x stands for the resolvent of H-Va. According to eq. (2.1.5), its 
range is ®(H0). Hence Va[H - Va-2]_1 is a bounded operator, again by eq. (2.1.5). 
Denoting its adjoint by {[H - Va-l]_1Va}, we obtain

We can now apply the spectral-resolution formula (1.4.28) to exp(- iHat). This yields

.4 _ Vo - A]“1 Va}e~iH‘g, [Ka(u + ff) - /?„(,, - - A]£O(A'2)/O).

(2.5.9)

It follows from eq. (1.4.9) that in the above expression the integral with respect 
to u is a bounded function of t, uniformly with respect to U± and £. In virtue of this, 
we have
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T=c

I dt lim
u±->±»

(2.5.10)

The shortest, if not the most subtle way of justifying this uses first the theorem of 
dominated convergence, next Fubini’s theorem (Burkill (22) sections 3.10, 5.4). This 
implies that the integrals are considered as Lebesgue integrals. A justification entirely 
within the framework of Riemann integration requires several continuity arguments. 
These can also be carried through without too much difficulty.

Now that we have eq. (2.5.9), we may skip the factors [H - Va- Â]-1 and Ha-Å. 
Next we can apply the spectral-resolution formula to exp(z'Hf). In virtue of a relation 
analogous to eq. (2.5.10), this yields the expression

v+

lim du lim
C, —> 0 J V . i

B _ e-£1(1_iw + «(!7j [R(p + i>;) _ /i()) _ + _ Äo(u _

(2.5.11)

The integration with respect to t can now be performed. Using the integral represen
tation of the resolvent R(y ± irf), eq. (1.4.11), we finally obtain

It is shown in the next section that in this expression the integration with respect to 
u may in fact be restricted to the interval Åa < u < K2.

2.5.2. Auxiliary formulas

In the final formula of the previous section, it is often convenient to go over 
to the Fourier transform of the function f(xm + 1,. . -,x2m_1). To show why this is so, 
we first consider, in the notation of section 1.4.2,

(2.5.13)
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According to eq. (1.2.17), the Green fonction has the form

s m - 5

= 4 . y _ <yl)- (2.5.14)

It refers to (3m - 3)-dimensional x and y.
For the Fourier transform of /’(x) we use the notation

/(Ä) - (2^)"* m 1 <]>**•  */ ‘(x)dx. (2.5.15)

The quantity \k\ is denoted by k, and similarly for other vectors.
It is explained below that

(2.5.16)

Now G(om)(x,y ;Â) depends only on x-y, and it belongs to £(x-y). Hence, by Parse- 
val’s formula and a theorem on resultants (Titchmarsii (24) theorem 65),

Jf7(x)c/x I Gj)m)(x,y;Å)/\y)dy = j 9< k) xf(k)dk. Ql.bAl}

Equation (2.5.13) can therefore be simplified to

K2
(g, eiHotE^K2)f) = lim J eiutdu $g(k) + -^f(k)dk. (2.5.18)

Here J dk is a Lebesgue integral. On the other hand, J du was originally meant to be 
a Riemann integral. It is convenient to consider it as a Lebesgue integral henceforth. 
This does not change its value. It makes il possible to use Fubini’s theorem and the 
theorem of dominated convergence to justify that

(2.5.19)

file limit with respect to C can now be performed. By the theory of Cauchy’s singular 
integral (Titchmarsii (24) section 1.17), we have

(2.5.20)

Hence we finally obtain
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(ø,ewE0(Æ2)/-) = J eikH e^k)f(k)dk. 
k<K

(2.5.21)

This shows that the Fourier transform of E0(K2)f(x) is equal to f(k) if 0 < k < K 
and vanishes if k > K. Since Ea(I\2) is nothing but E0(/i2 - 2a) acting in the space 
£2(xm + i> • •the Fourier transform of Ea(K2)f(xm + 1,. . . ,x2m_1) is equal to 
f(km + i’- ■ il < k < (Æ2-2œ)2 and vanishes if A > (Æ2 —2O)L If the argument
of eq. (2.5.13) is applied to eq. (2.5.9), it follows that in eqs. (2.5.9) to (2.5.12) the 
integration can be restricted to the interval Åa < u < K2.

It still remains to show that the Fourier transform of the Green function satisfies 
eq. (2.5.16). If in = 2, this is easily checked directly. Let us now assume that it has 
been proved for in = in1 and in = in2. We know from eq. (1.5.27) that

Q = expfzÆ^jq - xj + ik2-(y2 - x2)]GjW1 + W2 1)(x1, x2, ,j/2 ; Å)dy1dy2

— \ exp[ik1(y1 - xx) + ik2-(y2
(2.5.22)

where C is a contour in the o-plane such that the singularities of G0(cr) are on the 
right of it, and those of Go(2 - o) on the left of it. Now G0(x,y;X) is an integrable func
tion of y, by eq. (1.7.83). More generally, it follows from the estimate given in eq. 
(1.7.83) that, if C is chosen in a suitable way, the repeated integral in eq. (2.5.22) 
converges absolutely. It is again convenient to consider it as a Lebesgue integral. 
Then it follows immediately from Fubini’s theorem that the order of integration may 
be inverted. Our assumption concerning the transforms for m = inr and in = in2 
thus yields

2ttz J (A2 - 2 + cr)(A2 - o)d°'
c

(2.5.23)

Integration with respect to a now gives the desired transform for m = inY 4- in2 - 1.
Hence eq. (2.5.16) is satisfied generally, as we wished to show.

2.5.3. The wave-operators in momentum space

We now extend the use of Fourier transforms to eq. (2.5.12). In doing so, it is 
convenient to combine the coordinates xm + 1,. . . ,x2to_i into a (3in - 3)-dimensional 
coordinate xa, the coordinates Xp...^, into a coordinate xa, and to write

m'
TIW*/)  = (2.5.24)

3 = 1

To be explicit, we henceforth write ina instead of in. We use the operator Pa(Xa) 
defined by
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(xa ’ xa) fÇxa'Xa^ (,la

= 0 O’a > Xa)-

In terms of the operator Pa(Xa), we have

(2.5.25)

Tx

0
Tx

- lim f c-ct ^,eiH,Pa{Xa\H - Ha]e-‘H-‘Ea(K2)fa)dt. 
xa^-^Jo

(2.5.26)

If this relation is used in eq. (2.5.5), the reasoning of section 2.5.1 can be carried 
through essentially unchanged to show that in eq. (2.5.12) we may replace Va by 
VaPa(Xa)> provided we take

K*

{lim lim} lim lim du. (2.5.27)
K->X E-»0 X„ ->X £ 0 Ja ’ ,

We now recall that fa is of the product-form (2.5.1). The operator Iia(u ± z’C) is 
nothing but P0(zz-Âa± z£) acting only in £2(xa). The function Pa(Ara) VaP(zz T ie)g be
longs to 22(x'a,xa). If we denote it by 7?(x^,xa), the quantity

(2.5.28)

is analogous to the function exp(-zzz/)<j(x) in eq. (2.5.13). It is appropriate to denote 
the complex conjugate of its Fourier transform by

(2W2'"'' hî(,'/.«(« ± (2.5.29)

This is analogous to the function exp(zzz/)^(Ä) in eq. (2.5.18). Owing to the operator 
Pa, it does not exceed a constant depending on Xa, times the norm 11 VaR(u T Il- 
Now it follows from eqs. (1.7.18) and (1.7.19) that, if each function Vp- satisfies eq. 
(2.1.5), the norm in question is bounded uniformly in u in the interval Åa<u<K2. 
Hence we may repeat the step (2.5.19). With the resolvent equation (1.2.11) it is 
now easily checked that the Fourier transform (2.5.29) is a continuous function of zz. 
This makes it possible to perform the limit with respect to £ as in eq. (2.5.20). The 
linal result takes the form

!]/«)
- (2rr) I' J'e) V aI X^f{kayika. (2.5.30)
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2.6. The scattering operators and the resolvent
2.6.1. General formulas

If both fa and gb are of the product-form (2.3.4), it is obvious that with 
the help of eq. (2.5.12) we can express -^a+fa) 'n terms of the resolvent. A 
straightforward way of doing this yields a repeated integral, say fdujdv. A more 
interesting expression, with a single integral J du, arises in the following way.

According to eq. (2.5.5) and the intertwining property (2.3.11), we have

0

-i{lim lim} f _Tae_î/f«%(A^)/a)(//
(5->0 J

- z{ lim
Ä„->x

0
(2.6.1)

Now in eq. (2.5.3) the integral J' dt is bounded uniformly in K and e. Hence so is the 
integral fdt in eq. (2.5.5). Likewise, the integral \ ds in the last term of eq. (2.6.1) 
is bounded uniformly in Kb and e. Hence $ dt and {limK/ lime} may be interchanged. 
With the techniques of sections 2.5.1 and 2.5.2 we (bus obtain

(gô,Æj_[Pa+- l]/* a) = { lim lim}[A+{lim lim}B], (2.6.2)
Ka -> X ô -> 0 Kb -> X E -> 0

where A and B are given by

K't,
B = - --.lim f (gb, [Bb(u + z£) - Bb(u - i£)]VbR(u + ie)VaBa(u - iÖ)Ea(Kl)fa)du.

J

(2.6.3)

To obtain an expression which is more symmetric in a and b, we now consider 
According to eq. (2.3.23), this is equal to ôba(gb’/'a)- To express 

o
(<gb,Q'b_Qa_fa) in terms of the resolvent, we merely have to replace exp(d/)d/ in

— oc
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eq. (2.6.1) by -j exp(-5/)d/. Corresponding to eq. (2.6.3), this yields relations with
o

- ô instead of 5. Hence from the expression for (gb,£}'b_[£)a + — Ela_]/a) it follows that

<9b’SbM - ôba(9b>fa) + { lim lim lim}//,
-> x <5 -> 0 -> x £ —> 0

K-

C = - 1 . lim lim f (gb,[Kb(u + z'0 - Hb(u - i£)]Va[Ka(u + zd) - /?fl(zz - zd) ]Ea(K*)f a)du,
i (2 6 4)

0 = Li lim J + - Ra(u ~ iÔ)]Ea(K2a)fa)dll.

As regards the quantity C, we observe that, owing to eqs. (2.3.17) and (2.3.20),

T co
T limd f e~ô^gb,eïH'‘te~iH“tfa)dt = ôba(gb,/a). (2.6.5)

5-»o Jo

Upon integrating by parts, this yields

Tx
(Jba - l)(9bJa) = i{ lim Jim} { e~ô t {gb,eiH^[Hb H^e-^E^K^fJdl. (2.6.6) 

K , —> x Ô -> 0 J
0

In this expression the operator Hb-Ha may be replaced by Va-Vb, by eq. (2.5.6).
Hence

= —.{ lim lim} lim lim
2jli 0->() £->0

\^ba 0\£7&>/a)
K>,
J (.71» Jib(11 i£) Rb(u K y a - Vb\Ra<11 T I<5)£a(Æa)/a)rfu»

4

from which it follows that

{ lim lim} lim lim
K -> x <3 -> 0 K; -> oc C -> 0

4
(7i>> [Rb<dl + U) - ^b(/z - c)

x [Vtt - Vb][Ea(u 4- zd) - Ea(n - iô)]Ea(Kl)fa)dii 0.

(2.6.8)

Combining this with eq. (2.6.4), we see that in the expression for C the operator Va 
may be replaced by (Va + Vft)/2. Phis increases the symmetry between a and b. How
ever, as for the quantity 1), there is still a fundamental asymmetry owing to the fad 
that limf must be performed before lim^. This prevents us from going over to the 
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Fourier transform of fa. It seems that this cannot be changed unless we make ad
ditional assumptions on the function /a and on the interaction Va. This point is the 
subject of the following sections.

2.6.2. The repeated limit

Equation (2.6.4) essentially results from evaluating

(2.6.9)

where e is an obvious notation for an operator analogous to the quantity (2.2.39). 
Now we should like to interchange the two limits in eq. (2.6.9). Going over to the 
Fourier transform of fa, we could then perform the limit with respect to Ô by the 
method of section 2.5.3. Interchanging the limits is permitted if and only if

X

lim lim f - (I. (2.6.10)
£ —> o <5 —> o J

— x

Since Ea(K%)fa belongs to ®(H0), it is not difficult to see that the inner product 
in eq. (2.6.10) is a bounded and continuous function of h Hence, if Ô > 0, the integral 
certainly exists. But it is not at all obvious that it tends to a limit as ô tends to 0. How
ever, let us for a moment drop the operator Ea(K%), let us assume that Va satisfies 
the sufficient condition (2.4.16), and let us consider the special set of functions fa 
introduced in section 2.4.2. Denoting this set by (Sft, we see from eq. (2.4.17) that, 
if fa is any particular function in (Sa, there exist numbers and £, with 0 < £ < 1, 
such that

< A’(/„)(l + (2.6.11)

Hence the integrand in eq. (2.6.10) does not exceed an integrable function of /. As 
a result lim^ and fd/ may be interchanged, by the theorem of dominated convergence. 
Also,

As T tends to co, the second term on the right clearly tends to 0. Given 7’, it follows 
from an analogue of eq. (2.2.39) that
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-T
T O

: J\\e£té~iHtQb^sgb + eeEté'tHt J e ‘"‘ß^g^ jd!

- T t
T O
j lIKA_, t- - ®b-)9b\\ + \ \9b\ \ \eet - !| + e|tø6l|e*l  j é~£8ds\]dt

-T t

< 2T\\(Gb_ £ - Qb_)gb\\ + 4(coshsT- l)||g6||/e.

Hence, il' given T and a positive ?/, we choose e so small that

2T\\(^b-,e~ ^b-^ObW < U ^(cosheT-l)||gö||/« < d, (2.6.14)

the quantity 1 does nol exceed 2?/. From this it follows that by choosing first T suf
ficiently large, next e sufficiently small, the right-hand side of eq. (2.6.12) can be 
made arbitrarily close to 0. Hence eq. (2.6.10) is satisfied if we drop the operator 
^a(^a) and f°r ta take a function in (Sa. For future reference we note that this result 
is simply due to \\Vaexp(- iHaf)fa\\ being a bounded and integrable function of t.

Unfortunately, it does not follow from the foregoing that eq. (2.6.10) holds true 
generally. A conclusion to that effect could be drawn if it were known, for instance, 
that the limit with respect to ô existed and were bounded by a constant times |j/’CT| |, 
uniformly in e. But a result of this sort is not available. There is another difficulty, 
which is related to the operator Ea(A^). Throughout this investigation, we find it 
convenient to have functions of the form Ea(K%)fa, i. e. functions whose Fourier 
transforms with respect to xa vanish outside bounded regions. Now the functions in 

are not of the desired form. Hence they cannot really be used in the present context. 
We have not succeeded in deciding whether there is a suitable set of functions Ea(K%)fa 
such that eq. (2.6.10) holds true whenever Va satisfies the relation (2.4.16). What 
we do know is that eq. (2.6.10) is valid for fairly large classes of interactions Va and 
functions Ea{K^)fa. We now pass on to discussing this.

2.6.3. Restrictions on the interaction and on the relative motion

In the present section we formulate sufficient conditions on the interaction Va 
and on the wave-function [a to guarantee that in eqs. (2.6.1) and (2.6.4) the limits 
with respect to £ and å may be interchanged. The functions fa we consider all have 
Fourier transforms with respect to xn which vanish outside bounded regions. Hence, 
if Ka is large enough, Ea(K^)fa is nothing but fa, and we need not distinguish be
tween the two quantities.

If the limits are interchangeable for any particular combination Va,/a, we say 
that this combination is admissible. It is clear from eq. (2.6.1) that, if both Val,/a 
and Va2,/a are admissible, so is Val+Va2,/a- Hence we may restrict the discussion 
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to certain standard forms of the interaction Va, it being understood that a linear 
combination of these can be considered without additional difficulties.

As in previous sections, the function fa will be of the form

m'

fa(x) = + (2.6.15)
j = 1

Now let denote the set of all functions f(xm +1,. . ., x2m  j) in £2 the Fourier transforms 
of which have bounded first-order partial derivatives with respect to km + 1,. . . ,Ä2m_1 
and vanish if k^ + 1+ ... + k2m_ x > A2, the parameter K running through all finite 
values. Then we assume in the following that /'belongs to $■. If / belongs to and 
fa is of the form (2.6.15), we say that fa belongs to $a.

It is not difficult to see that is dense in 22(xm+1,. . . ,x2m_1). Indeed, the 
Fourier transform of any function in £2(x) belongs to £2(&). It can be approximated 
in mean square by a continuous function which vanishes outside a bounded region 
(McShane (25) section 42.4s). Such a continuous function can be approximated 
uniformly by a function which vanishes outside a bounded region and has con
tinuous partial derivatives of all orders (Schwartz (26) ch. I, theorem I). Hence the 
set of Fourier transforms of functions in is dense in £2(Æ,n + 1,. . •,^2m_1). As a result 
$ is dense in ä2(xm + 1,. . ■,x2m_1). The set is dense in the set of functions (2.6.15).

We now turn to the function Va. This is a sum of two-body interactions Vpq, 
by eq. (2.5.6). We saw in eq. (2.4.8) that each Vpq depends on the internal coordinates 
Xj(P) of the fragment to which particle p belongs, similarly on the coordinates xj(q) 
(j(p) j(.(ï)‘’J(p)’j(.(f) = !>->• • - and on one or more coordinates xm + 1>. . ■ ,x2m_1.
For the major part of the following sections, we concentrate on one particular Vpq. 
Given p and q, we choose the coordinates xm + 1,. . - ,x2m_1 in such a way that there 
is a certain xh (h = m + 1,. . . ,2m - 1) proportional to the distance between the centres 
of mass of the fragments j(p) and j(g). This yields

pq(xl > • • • > x2m — 1) — ^rxj(p),r ~^^^sxj(q), s + cxh) (2.6.16)

(cf. eq. (2.4.8)).
The restrictions we want to impose upon Vpq are most easily expressed in terms 

of the function

] pq(^L,drxj(p),r ~r'^(^sxj(q), s + CXh)(P(j(p))(.xJ(p))(P(j(q))(.xj(q))\ <^Xj(p)(^Xj(.q') ’ (2.6.17)
r s

appropriate modifications being understood in case the fragments j(p) and ./(</) consist 
of only one particle. We assume that Wpq is integrable, hence that Vpq is a square- 
integrable function of xh. Then the general sufficient condition of section 2.4.2 is 
certainly fulfilled. For the time being we further restrict ourselves to the case that

U«*») - j J

< 00 (2.6.18)
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for some // with 1 < // < 2. Slightly more general elasses of functions \\r are con
sidered in section 2.6.5.

2.6.4. A convergence problem

Il follows from section 2.6.2 that for Va,/a to be admissible, it is sufficient if 
||Vaexp(- iHat)fa\\ is a bounded and integrable function of /. Assuming that fa be
longs to , we now show that the particular function Vpq we are considering satisfies

(2.6.19)

Since y>a is contained in T(/70), the integrand in eq. (2.6.19) is a bounded and con
tinuous function of t. Hence the integration over the interval - 1 < t < 1 does not 
present difficulties. To cope with the case |f| > 1, we write

exp
2m — 1

/ 2
/ = 771 + 1

■ ’ x2m - 1 )

exp
2771-1

- 2 (-kV 
j = m + 1

V*7) 7 (*7/l + i • • • ’ ^2m — l)^^m + 1 •

(2.6.20)

Integration by parts with respect to kh yields

2771 — 1

= 777 + 1

'H
exp i

- j

2m -1
2 (-A-p+Ä;-x;)

J = 777 + 1

(2%r^i+'
2z7

(2.6.21)

the integrated term vanishing since /’ vanishes if kh > K.
We first consider the term proportional to ikh-xh. Owing to our special choice 

of coordinates, we have
m' r*

= Il^27«(x)ll9’w(xj)

7=1 J
exp i __

. j = m + 1

2ttz — 1
z 2 (-À^f + Ærx;)

x ^h'xhi (^m + l> ■ ■ ■ ^2m-l)^h2 ^^m + 1- • -^2m-l\\2

J ^(**>1 J exp[z( - k2 t kh- xh}\kh ■ xhk\kh}kh 2dkh\2dxh,

(2.6.22)

where F is a bounded function of kh which vanishes if kh > K. It is an essential 
point that F does not depend on /.

In the rest of the analysis, we drop the subscript h. On the other hand, we con
sider separately the three components of kh and xh, which we denote by ky and .Xy 
(y = 1,2,3).



Nr. 10 47

If in eq. (2.6.18) // = 1 , the function

Zßy(k - k > = (2;7r)_ i J ^rp<z(x)exp[/(*  - k'Y x]xß.vydx (2.6.23)

is bounded. If 1 < // < 2, it satisfies

[(2«)'S [ \Zßy(k '“'A*  -
r b H J (2.6.24)

< [(2%)~2 ||VV27(?(x).r^ry|/h/xj " .

1'he corresponding relation for Fourier transforms depending on one-dimensional 
variables k and x was proved by Titchmarsii (24) (sections 4.1-4.5) and, by a 
different method, by Zygmund (27) (ch. XVI, section 3). Zygmund’s proof, which is 
based on the Riesz-Thorin convexity theorem (Zygmund (27) ch. XII, section 1), 
applies to functions of several variables essentially unchanged.

With the help of eq. (2.6.24) it is easily shown that in eq. (2.6.22) the integration 
with respect to xh may be performed first. Hence

/,(/) - - *')exp[-  '(* 2 - k'2)t]kßk'yF(k)F(k')k~2k'~2dkilk'. (2.6.25)

We now go over to new variables as follows. First we write

k — k=iv, k + k' = v. (2.6.26)

Next we consider v in a coordinate frame fixed to w. In this frame we introduce polar 
coordinates choosing the direction of iv as the polar axis. Finally we go over 
from to iv,v,cp, r = z>zz>cos$, where w stands for |w|. With this choice of coor
dinates we have

A-2 - k'2 = v.w = r, 2k = jr + w| = (u2 + iv2 + 2r)2, 

2k' = - w| = (u2 + iv2 - 2r)i.
(2.6.27)

The quantity lr therefore takes the form
X2 U) = 2K 2K 271

A(0 d^e“MZ/??(w)zzF1p[(p2 M?2)2 — 4r2] 2 Gßy(w,v,(p,r), (2.6.28)

Gßy being some bounded function. Now if zu < 2K,
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Hence

with some bounded function Hßy.
It follows from eq. (2.6.24) that, if 1 <// < 2,

(2.6.30)

< X. (2.6.31)

If // = 1, the left-hand side of eq. (2.6.31) is likewise finite. Hence ^(0 is bounded. 
Also, 71(0 is the Fourier transform of a function of r which belongs to £r(r) (1 < v < 2). 
As a result 7j(f) belongs to £r/(v~1)(0. Hence [Ix(t)]^/t is integrable over - oo < t < - 1 
and 1 < t < x, by Holder’s inequality. In view of eq. (2.6.22), this shows that in 
eq. (2.6.21) the term proportional to ikh.xh is compatible with eq. (2.6.19).

The term proportional to ÄA.gradÄ can be discussed along the same lines. Instead 
of eq. (2.6.18) we merely need the fact that Wpq is integrable. For the term proportional 
to 1 we have to consider

m2)2 - 4r2] 1t/u = or

2Ä

;r|
2Æ

r)log|47<2 + rl - (47k2 - r)log|47<2 - r|- 2rlog2|r|J-

Now since

Jim (log 147k 2 + r| - logj47<2 - r|) = ~ 
r^0r 27k

(2.6.32)

(2.6.33)

the right-hand side of eq. (2.6.32) has only logarithmic singularities. Hence, by 
analogy with the function 71(/), the term proportional to 1 yields a bounded function 
72(0 which again belongs to £v/(r_1)(Z) and has the property that [72(7)]^’/7 is integrable 
over - oo < t < - 1 and 1 < t < x.

According to the results obtained thus far,

1 /<(>)■
i = 1

If Wpq is integrable and satisfies eq. (2.6.18),

(2.6.34)

(i = 1,2,3). (2.6.35)
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Now given eqs. (2.6.34) and (2.6.35), it follows from Minkowski’s inequality that 
||Vwexp(- iHat)fa\\ is integrable over - oo < / < - 1 and 1 < / < oo. Combining this 
with our previous result for -1 < / < 1 , we see that eq. (2.6.19) is fulfilled, as we 
wished to show.

In proving eq. (2.6.19), essential use has been made of the fact that the coor
dinates xm + 1,. . ■,x2m_1 were adapted to the particular function Vpq under discussion. 
Hence, this equation has thus far only been established for one single pair p,q. To 
extend it to all the interactions contained in Va, we consider a term Vrs with r,s p,q. 
By an orthogonal transformation among the coordinates xrø + 1,. ■ we 8° over
to coordinates adapted to Vrs. This will entail a transformation among km + 1>. .
However, if + ■ • • >^2m-i) ^as bounded first-order partial derivatives with respect 
to the original coordinates, so it has with respect to the new ones. If it vanishes outside 
a bounded region before the transformation, then the same applies afterwards. Hence, 
after the transformation the methods developed for V q can he used for Vrs without 
alteration. From this it follows with Minkowski’s inequality that || Vaexp(- iHat)fa\\ 
is an integrable function of t. This function is also bounded, since fa belongs to 2)(H0). 
Hence, if j'a belongs to and each function is integrable and satisfies eq. (2.6.18), 
the combination Va,fa is admissible.

2.6.5. Alternative restrictions on the interaction

If in eq. (2.6.18) p is small, VTp? may be fairly singular, but at large distances 
it must lend to 0 rather fast. If p is large, Ifpq must not have serious singularities, 
except possibly at the origin. In this case Wpq need not tend to 0 very fast as xh tends 
lo co, a decrease faster than x~l being sufficient if p = 2. Our general arguments do 
not apply beyond 1 < // < 2 because it is only in this interval that we can draw a 
conclusion of the form (2.6.24). However, the condition at infinity can be relaxed in 
a special case. For let us consider a function Wpq which is integrable and satisfies

™pq(xh) < const..rA 3 (xh > R) (2.6.36)

for some positive p. This function is conveniently written in I he form

Wpq(Xh) = w<(xh) + w>(xh\

w<(xh) = wPq(xh)> w>(xh) = () (° < æA < i (2.6.37)

w<(xh) = VV>(xA) = Wpq(xh) (xh > R).

Since W< is integrable and satisfies eq. (2.6.18) with p = 1, it can be discussed with 
the methods outlined above. In an obvious notation, it gives rise to functions <-(/) 
(z = 1,2,3) belonging lo £r/(1'“L)(/). Our previous methods also apply to the functions 
I2> and I3> associated with For these derive from the terms in eq. (2.6.21) pro
portional to 1 and ÄA-gradA, respectively. In analysing these terms, it was assumed 
only that Wpq is integrable.

Mat.Fys.Skr.Dan.Vid.Selsk. 2, no. 10. 4
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To investigate the term proportional to ikh.xh, we assume for simplicity that
< 1/2. There is no loss of generality in doing so. We drop the subscript h again 

and we use the variables w,v,(f,r described in eqs. (2.6.26) and (2.6.27). Expressing 
x in terms of polar coordinates x,%,y) in a frame of reference which has its polar 
axis in the direction of w, we obtain

(k-k').x = ZZÄTCOS/,

(k + k ) • x = d.t
r
— cos y 

div
1

2 \ 1 r*  U
z/2ZZ?2 ' sin/(cos cosy; + simpsinyf)

(2.6.38)

From this it follows that (k. x)(k'. x) can be written as a linear combination of terms 
proportional to z;2.r2, zzzzåe2 and iv2x2, respectively, the coefficients depending on 
r/viv,(p,x,y) an(l being expressible in terms of low-order spherical harmonics yZni(/,y>). 
Hence, in view of eq. (2.6.22),

-1

.r

r\ 0
’ w

2 , 2\2 < 21-1' + id ) - 4r J

0 - K‘ lr'
W ~ 2K

r1_ '>exp[z(- i t + w • x)] 2 2
l = 0 m

271 K2 w = 2K 2K 271

(2.6.39)

with some set of bounded functions C. Integration with respect to cos/,y>, and cp yields

X K2 W — 2K 2K
>(/) < f d.f I (^r f dw I dzz.r'3 irt 2 d, j(zp.r)zi? \?[(z?2 + zu2)2 4r2]-1

J J J J z = 0 2
0 — K2 r r

X [t’2^Zl(W’t’’r) + Z>ZZd)Z2(«M>,r) + ZZ72/9Z3(w,Z7,r)],

(2.6.40)

the functions I) being bounded. The integration with respect to .r may be performed 
next, by Fubini’s theorem. Also,

by the theorem of dominated convergence. As a result,

(2.6.41 )

(2.6.42)



Nr. 10 51

K2 w=2K 2K
A>(0 < J (^' J J dve~irt iv~3 + ^zz[(z;2 + zz;2)2 - 4r2]-1 

-X*  'r| rw = —
2K w

x [p2E1(w,p,r) + muE2(w,i>,r) + zp2E3(w,zz,r)].

(2.6.43)

We now consider separately the terms EX,E2, and E2. In an obvious notation, 
we write

A >(0 < Ai>(0 + A2>(0 + As>(0- (2.6.44)

Owing to eqs. (2.6.32) and (2.6.33),
K*

WO - J e-‘rtlog|r|F3(r)rfr, (2.6.45)

— K2

where F3 is a bounded function. Hence /13 >(/) belongs to ßv/(v_ 1)(/)(1 < v < 2), by 
previous arguments.

For the term /n> we consider

2K 2K
j div J dnzzr1 + ?7z>3[(z>2 + zz?2)2 - 4r2]-1 

r! |r|
2K w

2K
(4 A'2 + zu2 + 2r)(zp2 - r)2 , 
(4Æ2 + zn2 - 2r)(zp2 + rYdW

r
2K

1
8r (2.6.46)

Here the first term on the right equals log|r| times a bounded function of r, again 
by eqs. (2.6.32) and (2.6.33). Since 0 < r/ < 1/2 by assumption, iv~1 + r] < (\r\/2K)~1 + rj. 
Also, the logarithm in the second term on the right is integrable. Hence, the second 
term on the right is equal to r~1 + rl times a bounded function of r. Summarizing,

K2

Ai>(0 - J
- K1

(2.6.47)

with some bounded function 7q. This shows that, if v satisfies 1 < v < (1 -//)-1<2, 
the function Al >(0 1S Hie Fourier transform of a function in £r(r). Hence Ai >(0 be,' 
longs to £V/(*'~ 1)(Z).

It is now obvious that /12>(/) a^so belongs to for some suitable set
4*  
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of numbers v. For, given eqs. (2.6.45) and (2.6.47), it follows from Schwarz’s in
equality that

/12>(0 - [ e-M(r-1 + ’lloglrl)iF2(r)dr, (2.6.48)

-Ä2

and the argument can be completed as before. Summarizing, each function /u>(/) 
(z = 1,2,3) belongs to £V/(V-1)(Z). Hence so does 71>(0> by eq. (2.6.44).

Since Wpq is the sum of W< and W>, the function /t(/) is the sum of /$<(/) and 
It>(t). Hence ^(Z) belongs to Equation (2.6.35) is therefore satisfied also
in the present case. From this it follows as before that ||VJ?ffexp(- iHat)fa\\ is integrable 
over - oo < / < - 1 and 1 < / < a>, next that the same applies to ||Vaexp(- iHat)fa\\. 
Since either norm is a bounded function of I, the final conclusion is that the quantity 
11 Vaexp(-I is bounded and belongs to £(/). Hence the combination Va,fa is ad
missible, as we wished to show.

According to the results obtained thus far, Va,fa *s admissible (i.e. in eqs. (2.6.1) 
and (2.6.4) the limits with respect to e and ô may be interchanged) whenever fa be
longs to and each \Vpq is an integrable function satisfying either eq. (2.6.18) or 
eq. (2.6.36). This is due to certain functions /(/) belonging to £r/<r_1)(/). Now the 
functions /(/) depend linearly on Wp3, by eq. (2.6.22). Hence, if fa belongs to 
and each Wpq is integrable, for Va,/a to be admissible it is already sufficient if Wpq 
is some linear combination of functions satisfying eq. (2.6.18) or (2.6.36), possibly 
with different exponents //. This is the most general result we have obtained in this 
connection.

2.6.6. Examples of admissible interactions

Il does not seem easy to translate the conditions on Wpq into conditions on Vpq, 
unless something is known about the asymptotic behaviour of the functions Ç9o)(x7). 
We recall here that in eq. (2.6.16) the quantity 2r(4x;(j>),r stands for the distance 
between particle p and the centre of mass of fragment /(p). Now given this inter
pretation, it will be shown in a separate paper that, if all the interactions within 
the fragment /(p) are square-integrable and the eigenvalue does not belong to 
the continuous spectrum of the Hamiltonian /Z(y(p))(x;(p)),

(2.6.49)

for every a > 0. This result ensues from a study of the analytic properties of scattering 
amplitudes, which is beyond the scope of the present paper. However, let us assume 
that eq. (2.6.49) holds true. Let us also assume that

- / [i'ys(X).v:2"</3x < », v/( - J[rM(X)]2/‘,/3x < », (2.6.50) 
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with // = 1. The inequality

^^(.3lcÿ(]yp+y, + cxJ+ /„ + /,) tf > 0), (2.6.51)

applied with ß = 2, then yields

(2.6.52)

(cf. eqs. (2.6.16) and (2.6.17)). Hence eq. (2.6.18) is satisfied with g = 1. Similarly, 
if eq. (2.6.50) is true for g = 2, so is eq. (2.6.18). Both for /z = 1 and lor ft = 2, 
it also follows from eq. (2.6.50) that Vpq is square-integrable, hence that VFpç is 
integrable. This shows that, if fa belongs to $a, if eq. (2.6.49) holds true for a = 1, 
and if each Vpq satisfies eq. (2.6.50) with either p = 1 or // = 2, the combination 
Va,/a is admissible.

Again, let us consider the case that each Vpq is square-integrable and such that

|Vpî(X)| < const.X - (X > /?) (2.6.53)

for some positive g. In this case it is convenient to write

vM(X) - V<(X) + V>(X). I 6
- [vaxip + atfcsr)]2, I

the functions V< and being defined as in eq. (2.6.37). Since satisfies eq. (2.6.50) 
with // = 1, it yields a function W with //. = 1. Also, V> yields a function W of the 
form (2.6.36). For if in eq. (2.6.51) we lake ß = 3 + r/, we obtain

2 dsXj (q), s
s

cxh)(Pu (p))(xj (pytøa tø))j tø) ) I dxj (p)dxjtø)

- const.x/ ^(Np()NQ0 + Np
(2.6.55)

Hence, if eq. (2.6.49) holds true for a = (3 + r;)/2 and if each Vpq is a square-in
tegrable function satisfying eq. (2.6.53), each Wpq is the sum of two suitable functions. 
If fa belongs to $a, the combination Va,fa is admissible.

2.6.7. The scattering operators in momentum space

If fa belongs to and each function \Vpq satisfies the sufficient conditions sum
marized at the end of section 2.6.5, in eqs. (2.6.1) and (2.6.4) the limits with respect 
to £ and à may be interchanged. Going over to the Fourier transform of fa, we can 
then perform the limit with respect to 5. This yields an expression for the operator 
Sba in momentum space which is the subject of the present section.

In discussing the quantity (gi>,Sbafa), we obviously have to assume that Vb is 
such that the operator exists. Also, gb must belong to (Sö. Thus far no further 
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restrictions were imposed upon gb. From now on we assume explicitly that gb is of 
the product-form (2.3.4).

In applying the results of the last few sections, it is convenient to start with a 
function Eb(K^)gb the Fourier transform of which vanishes outside a region charac
terized by Kb, and to perform the limit with respect to Kb as the last step. Obviously 
this is always permitted. In this wav we are led to consider

lim lim lim.
Kh -> x e -> o Ö -> 0

(2.6.56)

Since, under the present assumptions, the quantity || Vaexp(- iHat)fa\\ is bounded 
and integrable, the integral

(2.6.57)

tends to a limit as ô tends to 0. Hence, in eq. (2.6.4) the quantities C and 1) each have 
a limit with respect to 5.

for the transition to Fourier transforms it is convenient to use the operators 
^a(^a) an<l defined in eq. (2.5.25). Replacing in eq. (2.6.4) Ba(u ± iô) by
^a(^a)^a(u ± ZA) an(l Rb(u ± U) by /?&(u ± iQPb(Xb), we have to evaluate

lim lim lim { lim lim }lim, (2.6.58)
k,,->xe->o<5->o at,,-»-» at„->x £->o

by analogy with eq. (2.5.27). We now show’ first that in eq. (2.6.4)

lim{ lim lim }lim = { lim lim }lim lim. (2.6.59)
<5->0 Aj->x> AT,(->x £->0 X.,->x 0->0

This is most easily proved with the help of eq. (2.6.1). For we have

< (2.6.60)

the second inequality following from eq. (2.1.4). According to eq. (2.6.60), in the last 
integral in eq. (2.6.1) the integrand does not exceed an integrable function of t which 
does not depend on Xa,Xb, and ô. Hence, if e > 0, 

lim lim ]
AT,, -> x

lim lim
Ô —> () JC—> x

lim }
A„ -> x

f lim lim lim
(2.6.61)
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by the theorem of bounded convergence. And similarly for the first integral on the 
right in eq. (2.6.1). If from eq. (2.6.1) we now deduce eq. (2.6.4), the limit-propertv 
(2.6.59) follows as an obvious consequence.

The limit with respect to £ can now be performed with the methods of section
2.5.3. In writing it down, we use the notation in terms of x'a,xa introduced in section
2.5.3. Since xa stands for the internal coordinates, xa for the relative coordinates of 
the ma fragments into which the system is split when it is in channel a, it is appro
priate to express fa in terms of xa,xa. For convenience we express gb in terms of x'b,xb, 
this being a set of coordinates which is related to x'a,xa through an orthogonal trans
formation.

In the new notation, taking the limit with respect to £ yields

(ÿb’^bata) ^b<Ådb > /a) + (^^) 2 mb + 2 lim lim{ lim lim
-> X e -4- o -> x xa -> X

I = g(kbXPb(Xb)<pbe^-\[- 1 + VbR(k2 + Xb + ze) ] VaPo( Xo)

x [Ra(k2 + Åb + id) - Ra(kb + Åb - iô)](paf).

(2.6.62)

In going over to the Fourier transform of /’, it is now a question of

hm„ j dkb j dkag(kb)AI{kb,ka)^ +  À2  + (2.6.63)

where Al can be found from eq. (2.6.62). Since P0(X0)ç?0 and VaPa(Aa)çza belong to 
£2 and 1 + /.b + zc) is a bounded operator, the function Al is bounded. Hence,
since /' belongs to Tv by assumption, the integral $dka does not exceed an integrable 
function of kb, uniformly in ô. As a result

(2.6.64)

Performing the limit with respect to ô now shows that in the final result there will 
be contributions only from the region where

(2.6.65)

Phis brings out the conservation of energy during the scattering process. Since kb is 
thereby restricted automatically, the limit with respect to Kb may be omitted from 
eq. (2.6.62). Expressing k; (z = ct,b) in terms of kt and various polar angles cok , with 

4dkida)kj (z = a,b), (2.6.66)

we thus obtain
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(.(Jb’^bala) &ba(Xlb'la)

i *( 2%) :j(nt/, + ma) 4-1 lim{ lim
x,,-> X

Arö,Na)/'(Äa), (2.6.67)

F(Ä&,Äa;g;X&,Xa) = (P^)^ ’ fy [ - 1 + VbR(E le) i aJ

It follows from our discussion of eq. (2.2.11) that Sbafa belongs to (fy. Let us 
now assume that the two-body interactions VL contained in V& satisfy eq. (2.4.25). 
Then all functions in (fy are of the form g7>(x^)/i(x?,), by section 2.4.3. In particular,

(ßba $ba)fa (Pb(.xb)^kxb^’

(2.6.68) 
(9b>[Sba - dba\/a) = J g(kb)h(kb~)dkb,

with some function h in £2.
If in eq. (2.6.67) the integration with respect to cok is performed first, the re

maining integral has an integrand which essentially depends only on kb and , 
the quantities E and ka being determined by kb according to eq. (2.6.65). Hence, 
combining eqs. (2.6.67) and (2.6.68), we obtain a relation of the form

J 9(kb)h(kb)dkb = Hin g(kb)hN(kb)dkb, (2.6.69)

(2.6.70)

The probability of scattering into channel b thus takes the form

(2.6.71)

A(Æ0;e;Ar&,Xa) =

where A' stands for e,Xb,Xa. Taking in particular g = h and applying eq. (2.6.69) 
once more yields

J ^Lv'(^)/iA.(Ä&)t/^.\h(kb)\2dkb = limlim
J NN'

2.6.8. Discussion

The results of the previous section are subject to the assumption that /a belongs 
to qa, and that Va satisfies the sufficient conditions discussed in sections 2.6.4 and 
2.6.5. These restrictions are imposed to guarantee that in eq. (2.6.67) the limits with 
respect to e and Xb,Xa do in fad exist. In eq. (2.6.1) we have introduced the repeated limit 
with respect to £ and ô to replace the limits with respect to the time variables s and /. 
These entered the problem because we have considered transitions from an initial state 
in the distant past to a final state in the remote future. The condition that there should 
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be a limit as £ lends to 0 is very closely related to Hie condition that in a scattering 
experiment the scattered fragments should become free sufficiently rapidly as the 
lime t goes to «?. This condition is fulfilled if lhe interaction between any two fragments 
tends to 0 sufficiently rapidly as their distance increases. Roughly speaking, we may 
therefore say that the behaviour of the resolvent in the neighbourhood of the con
tinuous spectrum reflects lhe asymptotic properties of scattered wave-packets at very 
large times. These in turn depend on the interaction, and in particular on its be
haviour at large distances, according to the foregoing analysis.

By taking e sufficiently small but different from 0, a good approximation can 
be obtained to the limit in eq. (2.6.67). Doing so may have advantages owing to the 
fact that off the real axis the resolvent can be studied much more easily than in the 
continuous spectrum. As a matter of fact, it was shown in part I of the present in
vestigation that, if all lhe two-bodv interactions in the system are square-integrable, 
there is a systematic procedure for constructing the resolvent for non-real energies. 
This method breaks down in lhe continuous spectrum. From lhe general theory of 
resolvents and spectra one gets the impression that this is a fundamental difficulty 
which cannot be solved within the framework of a Hilbert-space formalism. In view 
of the correspondence between small values of £ and large times, we may say that 
taking a non-vanishing £ is analogous to extending a scattering experiment over a 
finite time only. The analogy should not be taken too literally, however, the precise 
relationship between non-real energies and finite times being fairly complicated.

In eq. (2.6.67) there is also a limit with respect to Xb,Xa. If Xa is finite, the in
teraction Va is distorted in so far as it takes place outside a hypersphere of radius 
Xa in xa-space. Hence, taking Xa large but finite may yield a good approximation, 
provided the properties of the system are such that, if any two fragments are far 
apart, all the fragments arc effectively free. This is again a condition which refers 
to the interaction between the fragments decreasing sufficiently rapidly. Accordingly, 
once it is known that there is a limit as s tends to 0, the limit with respect to Xb,Xa 
does not present further difficulties. This we saw in the proof of eq. (2.6.59). Letting 
Xb,Xa remain finite corresponds to performing a scattering experiment in a finite 
region of space.

It is a crucial point that in eq. (2.6.67) the integration must be performed before 
the limits are taken. This equation thus contains a statement concerning a sequence 
of linear functionals. It is essentially the kind of relation one studies in the theory 
of distributions, the function gf playing the part of the test-function. From this point 
of view it is not surprising that /’must satisfy certain conditions of smoothness. In this 
connection it may be remarked that, since in measurements there are always errors, 
one cannot distinguish experimentally between a wave-function /\ and a wave-function 
/'2 which is almost equal to in lhe sense that ||/1-/2|| < >/» where 7/ is a small positive 
number determined by the accuracy of the experiment in question. Hence, in practice 
no loss of generality is involved if lhe initial state of a scattering process is described 
in terms of a set of functions which is dense in (£a.
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2.7. The scattering of two fragments
2.7.1. Restrictions on the interaction and on the relative motion

If in channel a the system is split into not more than two fragments, it is con
venient to develop the function / (ku) in terms of spherical harmonics, ka now being 
a three-dimensional vector. In many cases of practical interest we have

L

l (k„) - 1 (2.7.1)
! = 0 m

where L is finite. In any case the function /' can he approximated in mean square 
by a sum of the form (2.7.1).

If /' is of the form (2.7.1) and each flm is suitably restricted, the combination 
Va,fa is admissible under conditions on Va which are much less stringent than the 
ones imposed in sections 2.6.4 and 2.6.5. The present section is devoted to this point.

We assume for the time being that flm belongs to the set 65consisting of all 
functions defined in 0 < < oo which have bounded derivatives of the first order 
and vanish outside bounded intervals. If each flm belongs to 65 Zwi and f is of the form 
(2.7.1), we say that /' belongs to 65. The set of functions /'which are Fourier transforms 
of functions in 65 is denoted by 65. The set of functions fa which are equal to <pa(x'a) 
times a function f(xa) in 65 is denoted by 65a.

It is not difficult to see that 65 is dense in the set of functions (2.3.4). To show 
that this is so, we merely have to prove that, given a positive £ and a function fim(ka) 
such that

X

Jl/k(*«)l 2*«d*<.  < (2.7.2)

0

there is a function f/(Å* CT) in 65Zwi such that
X

j \flm(ka) 9(ka)Kdka (2.7.3)

o

Now if eq. (2.7.2) holds true, /im(ka)ka can be approximated in mean square by a 
function which is equal to fim(ka)ka in some interval 0 < 3// < ka < K — 'lrj and 
vanishes everywhere else. This function can be approximated in mean square by a 
continuous function which vanishes outside the interval 2// < ka < K - g (McShane (25) 
section 42.4s). Next, the continuous function can be approximated uniformly by a 
continuously differentiable function which vanishes unless r; < ka < K (Schwaktz (26) 
ch. I, theorem I). Let us denote the last function by 7i(Åff). Since /z(Åft) vanishes in 
the neighbourhood of the origin, we can consider the function g(ka) = h(ka)/ka. 
This clearly belongs to &lm . By the foregoing argument, it can be chosen in such 
a way that, in the sense of eq. (2.7.3), it approximates fim(ka) as close as we please. 
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Hence in this sense &lm is dense in the set of functions fim(ka) which satisfy eq. (2.7.2). 
From this it follows that 65a is dense in the set of functions (2.3.4).

Since in the special case of Lhe present section xa is proportional to the distance 
between the centres of mass of the two scattered fragments, it is automatically equal 
to the coordinate xh used in section 2.6.3. Expressing xa in terms of polar coordinates 
.va,o)x , we define

QpqC^a) = jWpq(xa)dœXi. (2-7.4)

Instead of eq. (2.6.18) we now consider the inequality

(2.7.5)

/t being restricted again lo 1 < it < 2. If eq. (2.7.5) holds true, it follows from Hol
der’s inequality that

] +æa) 1 + < co (2.7.6)

whenever £ < !//<• Hence the wave-operator ßa+ certainly exists, lhe sufficient con
dition (2.4.18) being fulfilled.

2.7.2. The convergence problem

We proceed to show that, if f'a belongs to 65« and each two-body interaction 
I'Q contained in Va is such that the respective equation (2.7.5) is satisfied, the com
bination Va,fa is admissible. The argument runs in many ways parallel to section
2.6.4, the crucial point being again the proof that || V„?exp(- iklat^fa\\ belongs to £(/).

Assuming for simplicity that the sum in eq. (2.7.1) consists of only one term 
and dropping the subscript a, we write 

(2.7.7)

the last member following upon integration by parts. Now

I /c.r./z + ^(A-.r) = 2(27t)~ - sin(A-.r Utt \ 11, + *(k.v),  (2.7.8)

where lhe remainder Ri + .s(kx) does not exceed a constant times (1 + A.r)“1. Also, 
(A\r) 2J/ + j(A\r) does not exceed a constant times (1+A.r)_1. Hence, if we write
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t JexP< ik2f)\ (2tt) v-sin(Â-.r ^ln ~ kn)flm(k) + S(k,x)]dk,

the function S(k,x) does not exceed a constant times (1+Åvr)~\ It vanishes if k is 
larger than some finite K, in virtue of our assumption that flm belongs to &im.

Let us now consider the relation

A(0 s I u Wx) 1f exp( - z7r/)sin(Aw - | In - J n)flm(k)dk\2dx

< const. i(k2-k'2)t]

x [(- l)*cos(Å\r  4 Â'.r) + cos(/c.r k'x)]flm(k)/'lm(k')dkdk'.

(2.7.10)

If eq. (2.7.5) holds true for some // in the interval 1 < /t < 2, the quantities

x
zx±(k ± Å-') = (2^) 2 j ()M(.r).r2cos(Å\r ± k'.v)d.v (2.7.11)

o
satisfy

(2.7.12)

(ef. eq. (2.6.24)). If in eq. (2.7.5) // = 1,Z¥, is bounded uniformly in A”. Hence in 
the third member of eq. (2.7.10)

(2.7.13)

Denoting Zx± by Z±, we thus obtain

71(0 < //l)lZ+(.k + k') + z-(k - À-')]exp[- i(k2 - k'2)t]F(k,k')dkdk', (2.7.14)

where F is bounded and vanishes outside a bounded region. 
In an obvious notation we now write

/t(() < Z1+(0 + 0-<0-

In terms of the variables

k2 k'2 = r, k + k' = i>

(2.7.15)

(2.7.16)

the function /1+(/) takes the form
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(2.7.17)

with some bounded function G. Hence, if // = 1, /1+(/) the Fourier transform of 
log|r| times a bounded function of r. If 1 < // < 2, we have the inequality

K

< const.|r|(1"^

K

(2.7.18)

In either case /1+(Z) the Fourier transform of a function in £r(r) (1 < v < 2). 
Hence /1+(Z) belongs to £r/(v_1)(Z). By a similar argument /L_(Z) belongs to £r/(v_1)(Z). 
Hence so does ^(Z).

We now turn to the term S(Â’,a’) in eq. (2.7.9). This yields a function /2(Z) such 
that

I2(t) = f Jexp[- i(k2 - k'^t^kk'^-'^HCl^k'ydkdk', (2.7.19)

where H vanishes outside a bounded region and satisfies

c<>llst.(U')M'_1)'2"f Qm(x-).«2(1 + Åx-fVi + k'x/^dx

< const.(H-')(/'’"'HJ [(?M(.v).v2l'''/.r]1!'TJ [(I i fcv)(l t i'x)]'‘'(1-'*>dxF' 1>"‘< const.

(2.7.20)

In terms of the variables r and n we have

(2.7.21)

with some bounded function J. If 1 < /z < 2, the substitution id = r2ç yields

..2 j (1 - /z)/2/z
2 i>~1dv < (l-/l)/2/lq-(3/1 + 1)14/1^ < COnst.|z-j(1“/z)/2/î

(2.7.22)

From this it follows that /2(Z) is the Fourier transform of a function in £r(r) (1 < v < 2). 
If /z = 1, the same result holds true by a simpler argument. Hence in either case 
72(Z) belongs to ^“^(Z).
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We are now in a situation analogous to the one discussed in section 2.6.4. The 
function exp(- can be written in the form 2z/i(0, as in eq. (2.6.34). The
functions 11 Vpç/i(0l | satisfy eq. (2.6.35). Hence 11 Vpeexp(-zHa/)/a|| is integrable over 
- oo < / < - 1 and 1 < I < co. Also, since fa belongs to ®(//0), ||^wexP(_ zHa/)/a|| 

is a bounded function of /. From this it follows as before that || Taexp(-z7/tt/)/a|| is 
bounded and belongs to £(/). Hence the combination Va,/a is admissible, as we 
wished to show.

Thus far it has been assumed that the sum in eq. (2.7.1) consists of only one 
term. However, if both Fa,/al and Va,/a2 are admissible, so is Va,/al + /a2. Hence in 
eq. (2.7.1) we may admit any finite number of terms. In other words, Va,/‘a is ad
missible whenever fa belongs to &a and each function Qpq satisfies eq. (2.7.5). This 
result can easily be extended to functions Qpq which satisfy

n
J Qpq^a) < COnst.^2"^ (.rfl > /?) (2.7.23)

0

for some positive //. The proof is omitted since, after the foregoing, it is completely 
straightforward.

2.7.3. Examples of admissible interactions

In the present section we give a short summary of some sufficient conditions 
on Vp under which eq. (2.7.5) or eq. (2.7.23) is satisfied. It is obvious that, if Vpq 
is square-integrable, eq. (2.7.5) holds true for /z = 1. To obtain a sufficient condition 
characterized by /z = 2, we observe that

[QpffOa)]2 c (2.7.24)

Hence eq. (2.7.5) holds true for /z = 2 if

J (2.7.25)

To reduce this inequality to a condition on Vpq, we require some information as 
regards the asymptotic behaviour of (fa. If this is such that e(|. (2.6.49) is satisfied 
for a = 4, eq. (2.7.25) holds true whenever

J [r„(X)]4A-2</3X < », J [VM(X)|4rf3X < ». (2.7.26)

If it is known that in eq. (2.6.49) a may be as large as |+ 4//, with some positive 
the condition Vpq has to satisfy at infinity can further be relaxed. In this case it 

is sufficient if
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R

I [Vp5(X)]2d3X < », |VM(X)| < eonsl.X’1“1’’ (X > «). (2.7.27)

0

These statements are easily cheeked with the methods given in section 2.6.6.

2.7.4. The scattering operators in momentum space

Under the assumptions that fa belongs to 05« and that the interaction Va is a 
linear combination of terms satisfying either eq. (2.7.5) or eq. (2.7.23), we proceed 
to express the quantity {(Jb,Sbafa) in terms of the Fourier transforms /' and g. This 
is most easily done with the help of section 2.6.7. It is obvious that for section 2.6.7 
to be valid, it is essential that f2a + and exist. Apart from this we merely need the 
fact that H Vaexp(-is a bounded and integrable function of t, and, in con
nection with eq. (2.6.64), that I a7Ja(Â'a)ç9a belongs to £2. Since these conditions are 
satisfied under the present assumptions, section 2.6.7 can be copied unchanged. In 
particular, if eq. (2.6.67) is combined with eq. (2.7.1), we obtain

(9b’^ba/a) ^ba^9b’ta)

il+1çi7ty 2 lim lim
€ —> 0 X f) —> x

2 2 fdß fA»»,
= 0 mJ J

E(kb,l,nr,E-,Xb) = (/Jfe(Xfe)99&e^''xq[- 1 + VÖ/?(E+ze)] Vaç>a -y—Ji+i(/cÄ))). 
læa

(2.7.28)

In this expression the limit with respect to Xa has been performed in the integrand. 
This is permitted since under the present assumptions

a^.xa,xa)(Pa^xa) . F '^ + fXJ'a'^ (2.7.29)
\/xa

belongs to V2(x'a,xa).
Thus far eq. (2.7.28) is restricted to functions fa in &>a. We now show that, if, 

given Va, there is an equation of the form (2.7.28) for any particular fa, then there 
is a similar equation for Ea(K2)fa. Since in general Ea(K2}fa does not belong to 65a, 
the validity of eq. (2.7.28) is thus extended to a larger class of functions fa. This 
is of practical importance in future sections.

The proof of our assertion is based on a straightforward generalization of eq. 
(2.2.28), according to which

E6(A-2)SS(, - S6,E„(Æ2). (2.7.30)

Let us now assume that Va and fa are such that ((/b,Söa/a) can be evaluated with the 
help of eq. (2.7.28). Then (^(Ä2)^,^^) can also be evaluated with eq. (2.7.28). 
This is due to the fact that we do not have to impose any special restrictions on (/, 
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apari from ils belonging to £2. Now according to eq. (2.5.21), the operator Eb(K2) trans
forms g(kb') into a function which is equal to g{kb') if 0 < kb < (K2 - Åb~)^ and vanishes 
if kb > (K2 - Â6)s. Hence, to find (Eb{K2y)gb,Sbafa) with the help of eq. (2.7.28), we 
merely have to restrict the integration with respect to to the interval max(Âa,Ab) 
< E < K2 (cf. eq. (2.6.65)). But this restricting the integration is tantamount to re
placing fa by Ea(K2}fa. Hence we are in effect replacing fa by Ea(K2}fa, and we are 
evaluating (qb,SöaEa(A'2)/a), by eq. (2.7.30). This can thus be done with eq. (2.7.28), 
as we wished to show.

Il is appropriate to call a function defined in 0 < k < <x> a step-function if it 
is constant in some interval 0 < k < K and vanishes if k > K. In this terminology, 
we may say that, if fa belongs to &a, so that flm belongs to ®Zjn, the operator Ea(K2) 
transforms flm into a step-function times a function in . We now denote the set 
consisting of all linear combinations of step-functions by Q. If flm is the product of 
a function in @ times a function in &lm, we say that it belongs to S®Zwi. Likewise, 
if /’ is of the form (2.7.1) and each flm belongs to G®Zm, we say that /' belongs to S®, 
/ to and fa to S®a. It will be observed that contains &a as a subset. Il fol
lows from the foregoing that for eq. (2.7.28) to be valid, it is sufficient if fa belongs 
to (5®a and Va satisfies eq. (2.7.5) or eq. (2.7.23).

2.7.5. Partial waves

'Thus far no assumption has been made as regards the behaviour of tin1 inter
action under rotations in coordinate space. The remaining part of this investigation 
is devoted to systems in which each two-body interaction is spherically symmetric. 
This case permits a number of interesting simplifications owing to the conservation 
of angular momentum. In discussing these, we make the additional restriction that 
the system is split into two fragments both in the initial and in the final channel.

If the interaction is spherically symmetric, it can be assumed without loss of 
generality that the eigenfunctions 9?0)(x;) are also eigenfunctions of angular momentum. 
For simplicity we even assume in the following that ça(x',) and (pb(x'b) are eigen
functions of angular momentum 0. This is a far-reaching restriction, which is, how
ever, not essential. It is made only to separate the subject of the present investigation 
from problems in the field of Clebsch-Gordan coefficients.

If the eigenfunctions ç0)(Xj) do not correspond to angular momentum (), a 
function fa of the product-form <pa(x'a)/ (xa) will not be an eigenfunction of the total 
angular momentum. In this case the eigenvalues will be degenerate. Hence there 
will be functions fa,fb,- ■ . with /.a = /.b = . . ., as in eq. (2.3.5). It may be convenient 
to use asymptotic wave-functions which are eigenfunctions of angular momentum. 
This can be achieved if, instead of defining the channels as in eq. (2.3.5), one takes 
as asymptotic wave-functions suitable linear combinations of functions of the form 
(2.3.5). This leads to a modification of the formalism which is left to the reader.

Analysing eq. (2.7.28) from the point of view of spherical symmetry, we recall
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that in channel a we are using a three-dimensional coordinate xa plus a coordinate 
xa which, in fact, is a set of n - 2 three-dimensional coordinates x;, where n is the total 
number ol particles. Let us now imagine that there is a three-dimensional coordinate 
frame in which both x;- (J = 1». . . ,n - 2) and xa are measured, and let us rotate this 
frame through Eider angles co. This changes x.j,xa into Z)(co)xj, Z)(co)xffl. Combining 
Xj,xa into a (3n - 3)-dimensional coordinate x, it is convenient to write

/■(£>( co)x;,D(co)xa) = /(D(co)x) = 7)(co)f(x).

In this notation the assumption of spherical symmetry implies

7)(co)Vi; = V;/)(co), 7)(co)7?(Â) = 7?(Â)7)(co).

If (f>a is an eigenfunction of angular momentum with eigenvalue 0,

= <f>a,
and similarly for <pb. Also,

(2.7.31)

7)(co)ei*'-x*
(2.7.32)

the functions l)lmm being orthogonal and having norm 2ti|/2(2/+ 1) 2 (Rose (28) 
sections 14,16). Now obviously

(.</>/') = (D(co)c/,/)(co)/') = (8tt2) 1 ^(7)(co)c/,7)(oj)/‘)c7co. (2.7.33)

Hence, with eq. (2.7.28),

(2.7.34)

A second application of eq. (2.7.33) shows that the inner product in eq. (2.7.34) does 
not depend on m'. Developing c;(7^) in spherical harmonics, we thus obtain

Mat.Fys.Skr.Dan.Vid.Selsk. 2, no. 10.

(2.7.35)



Nr. 1 O66

(2.7.36)

L

(2.7.37)

a relation similar to eq. (2.7.36).

(2.7.39)

™)VaXal)-

special case

(2.7.41)
il yields

/zwi(^a) 1’
hm^a) ~

9im(kb) ~ I k<Jkb

ÎJlm^b) ~

The limit with respect to Xb has now already been performed in the integrand, but 
there appears a limit with respect to Xa. The fact that this replacement yields the 
same limit as before is directly connected with eq. (2.6.8). If both Va and Vb satisfy 
eq. (2.7.5) or eq. (2.7.23) and fa and gb belong to and respectively, we have

2.7.6. The scattering matrix

Let us consider eq. (2.7.35) for the

This is compatible with the condition that flm must belong to In view of the
inequality

This equation holds true whenever fa belongs to and Va satisfies eq. (2.7.5) 
or eq. (2.7.23). It is obvious that Vb must be such that the operator i)b_ exists. Defining

+ ^1(1 aw,[- I +/((/•:+ie)V’a]P„(.V„)Za,). (2.7.38)

X,, -> <» l = o m J

= ôba - ™VVAfe)Z&Z> VaZaz) + VbXbl>R(E + ^VaXal\

we (*an  say that in many eases of practical interest the quantity Vb%bl belongs to £2. 
'This is particularly so if the sufficient condition (2.4.18) is satisfied. If Vbl%bl belongs 
to £ , we may write

<9b>Sbafa) =
8 0

Sba(E,l-,s;Xb)

(db^bafa) = lim lim }2 2 flh,Â)^a(7A/;eLY&>Aa)Âm(Â«)| Ma 

£ -> 0 Xj ->oo X„ -> so l=o mJ

Sba(E ,1 ,£ ,^b,Xa) — Ôba — 2^ÎÇPb^^b)Xbl>^aXal) ~ 2^0bXbl'^ a^^a)Xal)

+ ■+

%al being defined by
If Vb satisfies eq. (2.7.5) or eq. (2.7.23) and gb belongs to it only requires 

a slight modification of the argument from eq. (2.6.1) onwards to show that in eq. 
(2.7.35) the function Sba(E,l;e ;Xb) may be replaced by

(max(4,4) < E, < E < E2), | ;
(£<£,. E > E2). I
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If we now define

max

lim

ÄV/E.lim
J

Ei

Xba(E,l) = lim
£->0

E

J S^E',l-,e-,Xb)k\dE',

(2.7.42)

(2.7.43)

eq. (2.7.42) shows that 2Jba(E,l) is an absolutely continuous function of E. Hence 
there exists a function Sba(E,l)ka such that

E
xba(E.i) ■ J /)<<//•;-, 

max(Âa,Â/<)

(2.7.44)

Sba(E,l)ka being the derivative of Xba(E,l) for almost every E in the interval

(2.7.45)

Let us now consider a function fim(ka) which takes the value 1 in E± <E < E2 
and is sufficiently smooth to belong to &im. If fa stands for cpa times the Fourier trans
form of and Va satisfies eq. (2.7.5) or (2.7.23), then \\Vaexp(-iHat)fa\\

max(Â„,Â/>) < E < co.

According to eq. (2.7.42)
Ei Ei
[ Sbb(E.l)k„dE < J kadE. (2.7.46)

Ei Ei

Il is shown in section 2.7.8 that from this it follows that

|ReS&a(E,Z)| < 1, |ImSfta(E,Z)| < 1 (2.7.47)

almost everywhere in the interval (2.7.45).

is bounded and belongs to £(/). If gb is equal to yb times the Fourier transform of 
(/im(kb)Ylm(a>ki), where gim is the same function as in eq. (2.7.40), we have

e2
i f Sba(E,l;e:Xb)kadE - ôbb(gb,fj

Ei
00

— 00

00 - (2.7.48)

This follows from eq. (2.6.1) and the beginning of section 2.6.7.
As long as e is positive, either side of eq. (2.7.48) is bounded uniformly in Xb, 

by the argument of eq. (2.6.60). If E2 is held fixed, |j^of/bll does not exceed H.vJI 
5*
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times a constant determined by E2. Hence, in view of eq. (2.6.60), either side of eq. 
(2.7.48) is less than

e2
const.||<7öll/e = <*onst.[  J Å^dEp/e. (2.7.49)

If Xb tends to °c, the second term in the square brackets in eq. (2.7.48) tends to

Hence, since e|| is bounded uniformly in e,

We want to use these estimates to study the relation

(2.7.50)

(2.7.51)

(2.7.52)

If ka > 0 at the point E = Elf eq. (2.7.52) is straightforward. If E1 = Åa, there might 
be convergence difficulties. However, let e be positive. The estimate (2.7.49) then 
shows that, even if E± = Åa, eq. (2.7.52) is completely correct. In the second term 
on the right the integrand is less than an integrable function of E which does not 
depend on Xb. Hence in this particular term

(2.7.53)

by the theorem of dominated convergence. With the help of eq. (2.7.51) the argument 
can now be extended to show that in fact

lim
6->0

E>

J Jim
0

Combing this result with eq. (2.7.52) yields
E>

lim lim
e -> o -> ae

J S„a(E,
Ex

B,

Ei

(2.7.54)

(2.7.55)
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(2.7.56)

(2.7.57)

(2.7.58)

bounded

(2.7.60)

the inequality (2.7.41) gives

(2.7.62)

lim 1
E —> 0

la) = i 9lm(kb)Sba(E^)flm(ka)\/ kbkadE>

whenever flm belongs to and glm satisfies a relation of the form (2.7.2). Here 
it is understood that Va satisfies eq. (2.7.5) or eq. (2.7.23). If, in addition, Vb is such 
that Vb%bl belongs to £2, the function Sba(E,l;E;Xb) may be replaced by the function 
Sba(E,l;e;Xb') defined in eq. (2.7.37).

If in eq. (2.7.59) we choose in particular

lim
Af->oc 

0

and similarly for glm. Now Sba is a bounded operator. Also, Sba(E,l) is a 
function, by eq. (2.7.47). Letting M and N tend to », we thus obtain

QO
J 11lm(.ka) ~ tImM^'a))2kadka =

Now let flmM and gimN be any two functions in . Integration by parts as 
in eq. (2.7.52) shows that

If /lm is any function satisfying eq. (2.7.2), there is a sequence fimM in 
such that

lim I gim^Çkb^SbaÇE, I, e, Xb^fim^Çka^^/kbkadE

\ 9lmN(kb)Sba(E’ I)a)lz kbkadE’

(.9bN’Sba!aM) ~ (9b>$ba
N ,M -> a°

even for the most general functions flm and glm we may want to consider. 
With eq. (2.7.35) it follows that

J I So«(£. J l/k(A«)l2ME-
max(Z(1,Z,J max(Âa,Âj)

9im(kb) = fim(ka) = 0 (E < max(Âa,Â&)),

9lm(kb) = SbaCE’l)flm(ka)\/kalkb (E > ^<ka^b))>
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Since this must hold true whenever the right-hand side is finite, it follows that

(2.7.63)

almost everywhere in the interval (2.7.45).

2.7.7. Properties of the scattering matrix

In the present section we assume that satisfies eq. (2.4.25), so that all functions 
in are of the form ç?&(x&)7î(xft). Then

SbaVa^'a)] flm(ka)Ylm{Mk)dka = ^(4)] klm(kb) Ylm(.Mk,)dkb >

where hlm satisfies

9 lm(kb')klm(kb')kbdk' ~ ' 9lm^kb)^ba^k^,^)/lm^.ka>)\ kbkad^>

by eq. (2.7.59). Hence

^ba^a(xa)j e^a X'‘ //m(ka) lm(a>k„)dka

= ?&(*&)/  eikl'X''Sba(J^l)lhn(ka)Ylm(Mkl)\ ka!kbdkb-

(2.7.64)

(2.7.65)

(2.7.66)

If /.a < Åb and /im(ka) vanishes except in the interval Åa < E < Åb, the right-hand 
side of eq. (2.7.65) vanishes. Phis means that Sbafa = 0. It is obvious from eq. (2.6.67) 
that this situation arises whenever f (ka) vanishes outside Åa < E < Åb. It does not 
matter whether in channels a and b the system is split into only two fragments. It 
is therefore appropriate to call Åb the threshold for scattering into channel b, channel 
b being open or closed according as E > Åb or E < Åb.

Now let fim(ka) be zero except in an interval I in which there are no thresholds. 
Let the channels which are open in I all refer to splittings into two fragments, the 
respective functions <pb all having angular momentum 0. The scattering with initial 
state fa can then be described completely in terms of a set of scattering functions 
Sba(E,l), the parameter b running through all open channels. Let us now assume 
that there is unitarity in the sense of section 2.3.5. If eq. (2.3.33) holds true we have

^(SbcQc’^bala) $ca(9c’ta)'
b

(2.7.67)

With eq. (2.7.66) this yields

2 J = ôca J 9lm(kc)flm(ka)\/ kckadE- (2.7.68)
I I

Hence, since flm and glm are arbitrary,
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2Sbc(E,l)SbaÇE,l) = ôca, (2.7.69)
b

it being understood that E is restricted to a certain interval I in which the channels 
a and c are open, the summation including all open channels and no closed ones.

In the present problem it is useful to consider the conjugation C which trans
forms fa into fa. This can be discussed along the lines of section 2.3.6. Since <pa refers 
to angular momentum 0, it may be assumed without loss of generality that (pa is real. 
Hence in eq. (2.3.54) a' = a. Therefore,

Cdb’^b + ^a-fa) = (CQa-la’CQb + <h) = (A + fa>®b-9b) = (Sba/a’9b)- (2.7.70)

Equation (2.7.59) now gives

(.<Jb’Qb + ^a-ïa) = i J Ûlm(kb)^ba(E,l)fim(ka)\/kbkadE. (2.7.71)

This shows that, if Sba(E,l) corresponds to £)b_Qa + , the function Sba(E,l) corresponds 
to Qb+Qa_. Also, since the left-hand side of eq. (2.7.71) is nothing but (ßab9b>fa)>

Sab(E,l) = Sba(E,l) (2.1.T2)

almost everywhere in the interval (2.7.45). Combining this result with eq. (2.7.69), 
we see that, if in the interval I the functions Sba(E,l) are considered as the elements 
of a matrix of{E,l}, this matrix is unitary and symmetric.

The symmetry of of(E,r) is simply due to the Hamiltonian commuting with the 
conjugation C. It must be stressed that, to obtain the unitarity, we had to assume that 
eq. (2.3.33) holds true. Now it was remarked already at the end of section 2.3.4 that 
we do not know what conditions on the interaction are sufficient for eq. (2.3.33) to 
be satisfied. Hence we do not really have any insight into the question of unitarity.

2.7.8. An auxiliary formula

We must still justify eq. (2.7.47). This has been used to obtain eq. (2.7.59) 
and is thus an essential step in the argument. Simplifying the notation of eq. (2.7.46), 
we consider a function S(E) which is defined in an interval /0 and satisfies

|Js(E)dE| < w(7), (2.7.73)

i

I denoting any particular interval contained in /0, and m(I) its measure. Decomposing 
S into its real and imaginary parts, S = A + iB, we want to show that |A| < 1, \B\ < 1 
almost everywhere in Jo.

Let us now suppose that |A| > 1 in a set U of positive measure. Let us suppose 
in particular that A > 1 in U. Then

|a(E>/E > m(l7) > 0. (2.7.74)

u
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From this it follows that there is a positive number such that

] A(E)dE > m(U) + 2//. (2.7.75)
u

The set U is not necessarily an interval, hence there is not yet a contradiction with 
eq. (2.7.73). However, we can choose a sequence 0n of open sets all containing U 
such that m(On) tends to m((/) as n tends to ». If n exceeds some 2V, the set On satisfies

m(0„) < m(t7) + r/. (2.7.76)

An open set being the sum of a denumerable set of open intervals, it follows from eq. 
(2.7.73) that, if n > A’,

I $A(E)dE\ < m(On) < m(U) + z/. (2.7.77)

°n

Also, since A is integrable,
[ J A(E)dE\ < ,h (2.7.78)

o„- u

provided n exceeds some J/. Hence, if n > M,

I JA(E)dE\ > JA(E)dE - | J A(E)dE\ > m(U) + d- (2.7.79) 

o„ u o„ - u

Since this is incompatible with eq. (2.7.77), it follows that A cannot exceed 1 in a 
set of positive measure. By a similar argument, it cannot be less than - 1 in a set 
of positive measure. Hence |A| < 1 almost everywhere in Zo, and similarly for IE 
This completes the proof of eq. (2.7.47).

2.8. The scattering of a beam
2.8.1. Sums of partial waves

We conclude the present investigation with a discussion of the function 

'O’«TV
(2.8.1)

it being assumed that both Va(pa and Vbyb belong to £2. It follows from eq. (2.6.67) 
that the function Eba is an intermediate step in evaluating (c/b^bata)- H also occurs 
in the expression for ||(*S öa — ^baVa\I> according to eq. (2.6.71). In view of this, we 
want to study the limiting behaviour of certain integrals which have Eba in their 
integrands. This is done first from a formal point of view. In section 2.8.4 our results
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and Vb<pb

(2.8.2)

and similarly for channel b. If we write

(2.8.3)

it follows with the methods of section 2.7.5 that

ba(kb’ka » £ »

(2.8.4)

In obtaining this result, use was made of the relation

(2.8.5)

ba(J^>$ > £ > ^b) ba(J*b ’ > £ > ^b)‘ (2.8.6)

In view of eq. (2.7.37) we may write

(2.8.7)

, Fba depends only on 
and kb

cost? = (kb‘ka)/kbka,

For future reference we note that the sum in eq. (2.8.4) converges absolutely. 
It is obvious from eq. (2.8.4) that, apart from e and Xb

the angle & between ka and kb, and on the variable E, which is related to ka 
according to eq. (2.6.65). We therefore define

on the mathematical properties of Fba will make it possible to define the scattering 
amplitude. The physical interpretation of this quantity is discussed in sections 2.8.6 
to 2.8.8, where it is shown to describe the scattering through fixed angles of beams 
of projectiles.

In the following it is assumed throughout that in channels a and b the system 
is split into two fragments. Each interaction is spherically symmetric, both <pa 
and (pb are eigenfunctions of angular momentum 0. The functions Va(pa 
belong to £2, a further restriction being imposed in eq. (2.8.18).

Under the present assumptions we have

il

this series being absolutely convergent.
Now let f(kà) an(l y(kb) be any two functions in ($Zm. Let us define
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fl(ka) = fCk’a)Vlo(Mk^

DM - (2.< = p*-^ /,(*„)</*„,

fal(.Xa’Xa) = Va<xa)fl(.xa)’

(2.8.8)

and let us define (jbl(x'b,xb) in a similar way. Then it is clear that /aZ belongs to 05a. 
Hence, since Va is square-integrable by assumption, the combination Va,fal is ad
missible in the sense of section 2.7.1. Since Vb is also square-integrable, the quantity 

can l)e evaluated with the help of eq. (2.7.37).
Under suitable restrictions on Va and Vb, we first study the integral

J(e) = J j(i6)( VbWih^, R(E + is) (2.8.9)

This can be decomposed into angular-momentum components with the help of eq. 
(2.8.4). From eq. (2.8.7) it is clear that the component / is fairly closely related to 
(gbi,Sbafal)- the wav is remembered in which the expression (2.7.37) for (ffbi^bafai) 

was derived from eq. (2.6.1) plus a similar equation (or (gbl,Q'b_Qa_fal), it follows that

■1(e) - 2.V 2 (2/+ 1 )/’,(<■<>»!?)
I = 0

b%bi’R(E + E)VaXal)Hka)\ kbkadE

= 4ni 2 (2/ + l)Pz(cos$)
i = o

J ,11JdSe-“(?w,e‘«><<+,>Vi,e-iÄ>Voe-,s.i/ol).

— OO o

Hence

(2.8.10)

(2.8.11)

assuming the series on the right to be convergent

2.8.2. A convergence problem

The function J(e) is the sum of a series each term of which is known to have 
a limit as s tends to 0. If we can show that the series converges uniformly with respect 
to e, it follows that we have

00 00

limJ(e) = lim 2 = 2 tini. (2.8.12)
E —0 E —> 0 Z = 0 I = 0 E 0

A sufficient condition for this relation to be valid is the convergence of the series on 
the right-hand side of eq. (2.8.11). We therefore proceed to investigate this.

According to eq. (2.7.7)
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oc
2 (2/ +

I = o
1)11

1
const. 2. <

i = o

(2.8.13)

In this expression the sum with respect to I can be performed explicitly with the help 
of the addition theorem

2 (' + l)17=r;J'+ä(ix)J'O (*'*■)  
i = o y kk

sin k — À'I.r
|Å- - k'

(2.8.14)

(Watson (29) section 11.41 eq. (9)). Indeed, since Vpq is square-integrable, the function 
()p7(.r).r2 is integrable. On the right-hand side of eq. (2.8.13) the summation and the 
integrations may therefore be interchanged. This yields

2(2/+ 1)||IV~<H”‘O2
I = 0

Qpl(x-)x2dx f fexp[- i(k2 - k'2)t]S-^f^-f (k)f (,k’)k2k'2dkdk'.

Taking into account that /’ vanishes outside a bounded interval, it is now obvious that

2 (2/+ Oll^e iHat/al\\2 < const.
i = o

(2.8.16)

uniformly in t. A similar argument applies to channel b. Since is nothing but a 
sum of two-body interactions Vpq, it follows that

i 
i2(2/+l^|||V(,e-i"-7„i||(//]2< », 

-1
(2.8.17)

and similarly for channel b.
To extend this result so as to prove that the right-hand side of eq. (2.8.11) is 

finite, we now assume that the two-body interactions Vpq that constitute and Vb 
are such that there is a positive £ with

|0p/æ)(l + æ)1 + Cæ2<fø < (2.8.18)

a condition which is fulfilled whenever eq. (2.6.49) holds true for a = (1+0/2 and 
satisfies

f[Vpt(X)]2(l + A’)I + +3X < ». (2.8.19)

With eq. (2.7.7) we write



76 Nr. 10

exp[zZl(x)/]/i(x)

exp( — ik2t)

hence

c lal 1 /«(O'
i = 1

(2.8.20)

(2.8.21)

say. In connection with the term fn(f) we first consider

A(0 = S (2/ + O f f exp(- ik2t)
i = o J J

1
i(kx)f(k)dk\2

const. exp[- i(k2 - -/ (Åd/XÅ’^dÅ-dÅ’'.
I A*  - A’ |.r

(2.8.22)

Owing to eq. (2.8.18)

J QMO>2 sin IA - A’'|.r
I A- - A’'|.r

dx < const. (2.8.23)

uniformly in A- - A'. Hence, if we go over to the variables

we lind
A'2 - k'2 = r, k - k' - w,

A(0 -
-K2 — K

0 2K

(2.8.24)

(2.8.25)

with some bounded function G. From this it follows as before that I^t) is the Fourier 
transform of a function in £p(r) (1 < v < 2), hence that 7^/) belongs to Sr/(r_1)(7).

We now discuss the function

4(0 ■ 2 (2/ + O f QM(r).T2</.v|
1 = 0 J

fexp( - ZA’2/)|//A;.r./z_i(A-.r)/(A)dA-|2

const. J*  ()pQ(.r).r2(/.r| J*  exp(- zA* 2()cos|, kx f (k)dk\2

const. J Qpq(x)x3dx J J exp[- i(k2 - k'2)t]
sin I A-

f (k)f (k')kk'dkdk'.

(2.8.26)
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After the foregoing it is obvious that the first term on the right belongs to 2V/(V 1)(0- 
Let us denote the second term by Z22(0. If in eq. (2.8.18) we choose C in the interval 
0 < C < 1, the inequality

|sin.r| < (x > 0, 0 < £ < 1 ) (2.8.27)
yields

122(0 - f f exp[- - A-'2)0 l} f(k)/\k')kk'dk,lk', (2.8.2«)

the function Z satisfying
\Z(\k - À''|)| < const.|A - k'\^. (2.8.29)

In terms of the variables iv and r we thus obtain

M~2 + C//(zp,r), (2.8.30)

H being a bounded function. This shows that I22(O is the Fourier transform of a 
function which belongs to the classes £r(r) with v < (1 - £)_1. It follows that there 
is a v in the interval 0 < v < 1 such that /22(f) belongs to 1\f).

The terms f3(/) and /4(/) in eq. (2.8.21) can be discussed along exactly the same 
lines. The general result is therefore that there is a class £’’/(v_1)(/) which contains 
each of the four functions ^(f). Also, [^(Z)]2// is integrable over - oo < / < - 1 and 
1 < / < co.

From the inequalities of Schwarz and Minkowski it now follows that

fl 2 (2Z+l)||Vp,e-</,.7ai||2]L/
J u = o J

= const.

1

(2.8.31)

and similarly for the interval - oo < t < -1. This relation applies to all the two- 
bodv interactions Vpq contained in Va. Hence, with eq. (2.8.17),

2 (2/ +1)
I = 0

— oo

(2.8.32)
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There is a similar inequality for channel b. From this it follows with Schwarz’s in
equality that the right-hand side of eq. (2.8.11) is finite, as we wished to show. We 
can now use the relation (2.8.12), with the result that

lim f li(E + ie)Va_Wlk--’‘-)f(.ka)kbk„dE
8 —> 0 v

= 2m 2 (2Z + l)Pz(cos$) lim
1 = 0 x>

fakb)lôba - Sba(E>1) - ™KPb(Xb)Xbl’ yaXal)VCka) I kbkadE>

the series on the right being absolutely convergent.

2.8.3. The imaginary part of the scattering amplitude

If it is understood that <pa and cpb have been chosen real, there is a much more 
powerful result for the imaginary part of Fba. Since the Hamiltonian commutes with 
the conjugation operator which transforms /' into /’, it follows with eqs. (2.3.48) and 
(2.8.4) that

! (2.8.34)
= 2 [R(E + is) - R(E - is)]Va<paeik- ^)-

Also, by eq. (2.8.33),
lim f g(kb)[Im Fba(E,ÿ ; e)]/‘ (ka)kbkadE
E~^0J

= lim 2% 2 (2/ + l)P/cos#) 
£ —> 0 1=0

■ In 2 (2/+ l)P,(eostf) [MM« - ReSUE.DirOOfïXdE- 
1=0 J

- ReS!,„(£,/;E;Xi,)]/(Åo)|/Å-!)Å0<W-: (2.8.3.-,)

Let us now first concentrate on the case a = b, and let us choose /’ and g positive. 
In each term of the series in the third member of eq. (2.8.35) the integrand is then 
positive, owing to eq. (2.7.63). The series converges absolutely, by our previous 
analysis. From this it follows that the series

■2.7 2 (2Z + l)P,(co.s^(Å-a)[l - HeSo(>(E,/)]/:(/.„)Å-„ (2.8.36)
I = 0

converges for almost every E, its sum being an integrable function (Burkill (22) 
section 3.10). Denoting the sum in question by

(2.8.37) 
we have

lim = f Û(ka)l}m Faa(E^)V (ka)kadE- (2.8.38)
8 0 v *
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Now let f and </ take the value 1 in a certain interval I, and let us consider the 
second member of eq. (2.8.35). This involves R(E + ie) - R(E - is), by analogy with 
eq. (2.8.34). If h is any function in £2, we have

(h,[R(E + ze) - R(E - z‘e)]7i) = 2z«||7?(E + ie)h\\2. (2.8.39)
As a result

1 -ReSaa(E,7;£;Xa) > 0. (2.8.40)

Hence, f and g being positive,

J [I - ReSoo(E,/;e;Xo)]Å-odE< J^(EO)[1 - Re§aa(E,/;C;Xo)]/;(^)M^ (2.8.41) 

I
Since we know from the previous section that the series in eq. (2.8.35) converge 
uniformly with respect to £, it now follows that

lim f (2/
f-> 0 Z = 0

ReSfla(E,/;£;Xo)]/rod£

2 (2/ + 1 )Pz(cos$)lim f [1 - ReSaa(E,/;£;Ara)]Aaz7^ 
= 0 £ ~0 *

I

(2.8.42)

either series in eq. (2.8.42) converging absolutely, uniformly with respect to e. On 
the right the limit with respect to e can be performed with eq. (2.7.60). The argument 
which led to eq. (2.8.38) then yields

lim \mFaa{E,d\E}k2adE 
e->0 JI

-.1 ImFao(/l,^)A’2z7Z<
I

If and E2 are any two points in the interval I, and the integral
e2
$ lmFaa(E,d;e)k*dE  (2.8.44)

Ei

is considered as a function of E2, this function is of bounded variation, uniformly 
with respect to £. If this result is combined with eq. (2.8.43), it follows from the Helly- 
Bray theorem on limits of Stieltjes integrals (Winner (30) ch. 1, theorem 16.4) that 
eq. (2.8.38) holds true in all cases in which g(ka)f {ka} vanishes outside a bounded 
interval and is continuous except for a finite number of jumps.

To extend the foregoing to the case a b, we observe that

I«». - ReS(,o(E,l;£;Xi,)|2 < [1 - ReS^E, / ; e ; JQ] U - ReSoo(E,/;£;X6)], (2.8.45) 

owing to eq. (2.8.39). With the help of this inequality it is readily shown that there 
exists a function Im Fba(E,d) which for almost every E satisfies
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= 2?c 2 (2/+ l)pz(cos^)[ôôa - ReS&a(E,/)]|/^a. (2.8.46)
i = o

If gÇk^f (ka) vanishes outside a bounded region and is continuous except for a finite 
number of jumps, we have

lim ( g(kb)[\mEba(E,^',€)]f(ka)kbkadE = (g(kf)[iin Eba(E, d)]f (ka)kbkadE. (2.8.47) 
f->0 J J

The function ImEba(E,&)/In is called the imaginary part of the scattering amplitude. 
It is sometimes convenient to consider cos# as a function of E and

J - Äöl> 
according to

cos# - (A-2 + kl - A*)l2k„k b.

In order that |cos#| <1, it is necessary that

ika ~ kb\ < A < ka + kb.

If this condition is fulfilled throughout the interval I, we have

lim f P,(fk*  + A2 - ^l'lkMlå^ -
0 J

I

JP,((A-2 t A-2 - 42)/2#A)[<’m /)]| 'tø.dE,

(2.8.48)

(2.8.49)

(2.8.50)

(2.8.51)

owing to eq. (2.7.60). The convergence properties of sums of integrals of this form 
can be discussed with the methods developed above. It can also be shown that both 
eq. (2.8.46) and eq. (2.8.47) remain valid when cos# is considered to be function of 
E and A, provided A is such that |cos#| < 1 throughout the energy region considered.

2.8.4. The scattering amplitude

To get some insight into the real part of Eba, a more elaborate analysis is re
quired. For this we assume as before that Va satisfies the restriction imposed by eq. 
(2.8.18). It is sufficient if Vb is square-integrable. Il is assumed that / (#a) belongs 
to @>im- The function g(kb) may be any function satisfying

(2.8.52)

We define fal and gbl as in eq. (2.8.8).
It follows from the method by which an expression for $ba was obtained from 

eq. (2.6.1) that
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li- S^E.I-.e-.X^Xk^k^dEi
ao ac
I («^‘"‘‘ftÄ) - 1 + ß:_.e]V„e-i"",/fli)rf'l < 2|lfell J v„ I

— X — X

(2.8.53)

(cf. eqs. (2.7.48) and (2.7.50)). Taking in particular

,'X^) - [\a ~ Sba(E,l-,e-,Xb)]f(ka)\/kalkb, 
we obtain

i/|[«56.-SSa(E,Z;e;X6)]/f(i„)|2M£ < < J l|V„c-<H-,/01l|d/]2.

Now, in virtue of eq. (2.7.60),

(2.8.54)

(2.8.55)

(lim lim }{lim lim } (/\kj[åba - 5ba(EJ;e -,Xb)][öba - Sbll(E,l;e-,Xb)]f(ka)kadE
E —0 JVit —-c e' —> 0 z J (2.8.56)

Hence, with eq. (2.8.55),

i/l^« S^E.l^fXk^dE < 4[ J

Owing to eq. (2.8.32) it now follows that

(2.8.57)

S^E.l-.s-.X^fXk^k.dE (2.8.58)

tends to 0 as ;V tends to °o, uniformly in e,Xb. In view of eq. (2.8.7) this means that, 
given a positive £, we can determine N in such a way that 

pcosöjll^F^.öi^X») Jo<2l+l)/Vcosd)[5(>0-À6(,(Ê,/;£;A'6)]p;a-0) Væ < f (2.8.59)

for every e,Xb. There also exists a function Fba(E,&) such that
I f 2|dCOS#J||*̂i SF'“(£’#) _,?0(2/ + - S».(£-')y(*a)  VE < S, (2.8.11(1)

by eqs. (2.8.32), (2.8.57) and the Riesz-Fischer theorem (Riesz and Sz.-Nagy (11) 
section 28). This function is square-integrable in the sense that

i

J dcos#J\Fba(E,-»^kbk2adE < ». (2.8.61)

-1 I
Mat.Fys.Skr.Dan.Vid.Selsk. 2, no. 10. 6
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where I may be any bounded interval contained in the interval (2.7.45). In the space 
ol‘ all functions satisfying eq. (2.8.61) we can say that

2m
l.i.m. y~

J kbka
2 <2/ + 1 )P,(cos#)[dto - .S6o(A’./)]. 
= 0

(2.8.62)

In the following Fba(E;fF)l±7i is called the scattering amplitude. If a function 
ImFfca(E,^) can be defined according to eq. (2.8.46), it is clear that this is the imaginary 
part of the present function Fba(E,&). We recall in this connection that in the previous 
section we obtained the result that the series in eq. (2.8.46) converges for almost 
every E. For this we had to assume that Vb satisfies eq. (2.8.18). In the present section 
we merely consider convergence in mean, which is established under the much 
weaker condition that Vb be square-integrable. In either section Va is assumed to 
satisfy eq. (2.8.18).

In an obvious notation we can write eqs. (2.8.59) and (2.8.60) in the form

J doos# J\[F{E,»-,e-,Xb) - F^E^-.e-.X^fXk^k^.dE < 2^, 
-1

1 

fdcos&f l[F(E,d) - F^E^JfCk^k^dE < 2rf.
-1

Let us now consider the integral
i

j dcostf j S(E,d)Flm(E,'& ; e ; X„)/(ka )\/k^a k„dE, 
-1

where Ii satisfies
i 

JcZcos^J|7?(F,^)|2Â’a(/F < oo. 

-1

> (2.8.63)

(2.8.64)

(2.8.65)

According to eq. (2.8.63) and Schwarz’s inequality, there exists an integer A' such 
that, given £,

i

JdcosdIB(E,«)[F(E,d; e;X„) - F^E,fi;e;Xb)]f(ka)fäk,k,,dE\ < f, 
-1

1

JdcosfljB(E,ff)[F(E,&) - FN(E,WfXka)]/l^akadE\ < t,
- 1

(2.8.66)

for every e,Xb. Now it is not difficult to see that
i

[ Pz(eos#)B(E,#)|AjÄv/eos#

-1

(2.8.67)
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can be considered as a function r/(Â^) satisfying eq. (2.<8.52). Hence, given N, we can 
choose e,Xb in such a way that

i

J(Zcos^Js(Æ,#)[Fa.(E^)-Fjv(E^;£;.V6)]/'(*„)|/ v;àv/E
-1

< (2.8.68)

owing to eq. (2.7.60). If this result is combined with eq. (2.8.66), it follows that

(2.8.69)

In particular, since F satisfies eq. (2.8.61),

; lim
£—>0

lim ) ( lim lim
X;,->00 e'~>0 JV'->=O

1

dcos# J ; e'; X^)Fba(E,&; e ; Xb)f (kJk^dE

(2.8.70)

In the present section it has been assumed thus far that /’ belongs to (^lm. How
ever, given the fact that eqs. (2.8.63) and (2.8.66) hold true for functions / in Ôôlm, 
it is clear that these equations are satisfied for every /' which is bounded and vanishes 
outside a bounded region, it being understood that the integer N depends on the 
particular f considered. Also, since for eq. (2.7.60) to hold true it is sufficient if /’ 
belongs to eq. (2.8.68) is valid for every f in Hence so are eqs. (2.8.69)
and (2.8.70).

Now let E1 and F2 be two points in some bounded interval I contained in the 
interval (2.7.45). If is held fixed and the integral

i e,
Jdcosfl J B(E,»)Fbll(E,-» ; e ; Xb) \/kbk„ ka,IE

- 1 Ei

(2.8.71)

is considered as a function of E2, this function is of bounded variation, uniformly 
with respect to e,Xb. This can be shown with Schwarz’s inequality and the methods 
used in connection with eqs. (2.8.41) to (2.8.44). It follows with the Helly-Bray 
theorem that eqs. (2.8.69) and (2.8.70) hold true for every [ which vanishes outside 
a bounded interval and is continuous except for a finite number of jumps.

It is easily checked that throughout this section cos# can be considered as a 
function of E and J, according to eq. (2.8.49).

6*
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2.8.5. Beams of projectiles

Let us consider a system which in the distant past was in channel u and behaved 
according to some wave-function exp(- z'Ha/)ç?a(x^)/’(xa). If the wave-function is 
decomposed into an incident wave plus a scattered wave, and it is assumed that 
Va and Vb are square-integrable, the probability that in the remote future the scattered 
wave will be in channel b is given by

IIG^« - ^a)/«ll2 = K2rr)“4(lim limj'lim lim } f Âba(kb;s' ; Ar')Afta(Âft;e;Xfc)dÆft,
€ -> 0 > x s' —> o -> x v > 2

e ’ ^b) ~ J” ^aFbaCkb’ ka ’ e ’ ^b)t •

This is a simplified form to which eq. (2.6.71) can be reduced if ma = mb = 2 and 
Vrt and are square-integrable.

In the initial wave-function as well as in the function Fba, there occurs a vector 
xa. This denotes the distance between the two fragments which are scattered at each 
other. For the following it is convenient to consider the scattering in a coordinate 
frame in which one of the fragments, the target, is fixed at the origin. Obviously xa 
then stands for the distance between the origin and the projectile. The motion of the 
projectile is determined by f(xa\

We now compare the event considered in eq. (2.8.72) with the scattering from 
an initial slate

e_i7/a</a(r) = e~iH<‘t(pa(x'a)f(xa + r). (2.8.73)

In this state the motion of the projectile is determined by f(xa + r), hence in the 
distant past the projectile behaved like the original one, except for a translation over 
r. By analogy with eq. (2.8.72), we get

ll(S&a - ^a)/a(r)||2 = i(2%)“4(liin lim){lim lim ) 
e -> 0 -> » e' -> 0 oo

^baC^h ’ ] kaFba(kb> ka > À

Now let r be a two-component vector which varies over some plane q. Let us 
consider a statistical mixture of projectiles f(xa + r) in which the number of projectiles 
with r-veclor in dr is equal to dr. In the following such a mixture is called a beam. 
We shall see below that within the framework of Hilbert space it provides a good 
description of what one usually tries to discuss in terms of plane waves. It will be 
understood that, if a beam is scattered, all the projectiles are scattered independently, 
i. e. the total scattering intensity is the integral over r of the intensities due to the 
separate projectiles. In channel b the beam f(xa + r) thus yields a scattering intensity 

ha = J IK5&a -

()

(2.8.74)
\ Aba(kb Xb)Aba(kb ’,Xb)‘lkb ■

(2.8.75)
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This quantity is now discussed under the assumption that Vb is square-integrable 
and that Va satisfies the restriction imposed by eq. (2.8.18).

2.8.6. The scattering intensity

In virtue of eqs. (2.8.5) and (2.8.7)

1 (2tt)"Âba(kh-,r-E'-, Xb)Aba(kb-r-E - Xb)dkb

00 oc

ill!
V = 0 m' 1 = 0

Here cok and cok> stand for the polar angles of certain vectors ka and ka which are 
both of length ka. If

f l/'<A)|2f/c% < M < œ (2.8.77)

and f (ka) vanishes if E is outside some bounded interval I, then each term of the 
series in eq. (2.8.76) tends to a limit as E,Xb,s',X'b tend to 0, œ, 0, °o, owing to eq. 
(2.7.60). Taking into account that

(2.8.78)

2 si fywc°fc„yfea‘7'(^)^fl 

I = 0 m I J

2 J \f(kay2dcok < M, (2.8.79)

it follows from Schwarz’s inequality that the series in eq. (2.8.76) is dominated by

2 (2/- + 1)
I’ = 0 I

I

X 2 (2/+ 1) f 1^. - SM(E,/;£;A'i,)|2Aa</E 
z = o 9

(2.8.80)

In this expression either series converges uniformly with respect to E,Xb,E',Xb, owing 
to eqs. (2.8.32) and (2.8.55). As a result the limit with respect to £,X0,£',X& of the 
series in eq. (2.8.76) is the sum of the limits of the separate terms. Also,

|(2tt) 4(lim lim /{lim
E —> 0 JTj-—> 0

■>xi)Aba(Eb;r-,e-,xb)dkb

= f| 2 2 f WwJfca)^fea’r/(* a)rfwA:a|2/coc/E.
J J l = 0 m •)

(2.8.81)
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Extending the integration with respect to a>k over the full angle 4%, we obtain, with 
eq. (2.8.74),

11(5». - -WaCOII2 = i 2 |2ME- (^-8.82)
I = 0 m J J

At this point it 
axes 1 and 2 in the

is convenient to introduce a rectangular coordinate 
plane q and axis 3 perpendicular to it. Writing

frame with

we obviously have

kai = ^asin/5acosaa, 

ka2 = ka^ßasinaa, 

ka3 ~ kac®sßa’

(2.8.83)

(2.8.84)

Now let our beam be directed in the sense that f'(ka) = 0 if cos/)’a < 0. In the region 
of integration there is then a one-to-one correspondence between ka,ßa,xa and ka, 
kal’ka2’ Also,

I </cos//a(/aa = Jka \k2a - k2al - k2a2)~ 2dkaldka2. (2.8.85)

Hence

(2.8.86)

is the Fourier transform of

As a result
j !.VZm(^»|2^r = j l.9z7,t(^Jvfli,Aa2)i2^al^a2

= k^ka2 j \YlmCMka)/'< ka)\\^ßJ-1 dCOSßad(Xa.

(2.8.87)

(2.8.88)

We now assume that 
kä 2f l/(^a)|2(cos/5a)_1rfcos^a</aa < oo, (2.8.89)

a condition which implies eq. (2.8.77). If it is satisfied, it follows with eqs. (2.8.5) 
and (2.8.75) that

ha =2^2 (2/ + 9
I = 0

\öba - Sba(kkl)'\2ka1(lE\ |/'(Äa)|2(cosßa) b/cos/V*«  • (2.8.90)

According Io eq. (2.8.62), we may also write
i

ha = Jdcos^JlF&a(£»^)l2M£Jlf(*a)l 2(cosW1rfcos^adaa. (2.8.91)

-1



Nr. 10 87

Alternatively, defining
(2.8.92) 

we obtain

fba = dkb^\Fba(.kb’ka)f(ka)\2(cosßarldc^ßadxa- (2.8.93)

2.8.7. Scattering in a fixed direction

Equation (2.8.93) suggests that /^^(co^jdco^ is the intensity of the scattering 
into the angle ôa>. That this is correct can be seen as follows. If in eq. (2.8.81) the 
integration over (ok/ is restricted to bat, we obtain the probability that the projectile 
f(xa + r) yields a wave scattered into the angle ôco. This is obvious from the proof 
of eq. (2.6.71). Let us now define

F„(* &A) = FN(E,V),
AN(kb,r) = j kaFN(kb,kayk«'rf(ka)do)ka> (2.8.94)

FN(E,&) being the function considered in eq. (2.8.63). Then it follows from eq. (2.8.63) 
that there is a function A(Æ0,r) such that

lim f \A(kb,r) - AN(kb,r)\2dkb = 0. (2.8.95)
N —> 00 J

Either side of eq. (2.8.81) is equal to

i(2^r4 f \A(kb,r)\2dkb = i(2^r4 Um f \AN(kb,r)\2dkb. (2.8.96)
J N -> 00 J

The intensity scattered into channel b is obtained from this expression bv integrating 
over r. Now

i(27r) 4 J \AN(kb,r)\2k2dkb < |(2%) 4 J\AN(kb,r)\2k2bdkb
ÔCO 47r

< IIG^a - ^a)/a(OH2»
(2.8.97)

the second inequality following with eq. (2.8.82). Since the right-hand side of eq.
(2.8.97) is an integrable function of r, it follows that, when integrating the expression 
(2.8.96) over r, we have

f dr lim = linv | dr. (2.8.98)
J N->*>  N —> » J

By analogy with eq. (2.8.88)
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cos/?a) ^cos/V*«- (2.8.99)

Owing to eq. (2.8.98), the scattering intensity in the angle èco thus takes the form

(2.8.100)

(2.8.101)

into the angle dco,

lim
2V-> oc - 

ôa>

This shows that | ^ba(.0J
0(0

as we wished to prove.

the intensity of the scattering

(?

Jkbdkbj\FN(kb>ka)f (ka)\\cosßa) 1(F‘^ßadxa ■

The limit can now be performed with eq. (2.8.63). We simply obtain

J(lMk„ Jkbdkb^\FNf Wcosß^dw^ = J k2bdkb$ \Ff fteos^)-1 

<5to

... 2 lim 
16^: x

öa>

2.8.8. The cross section

To illustrate the physics of eq. (2.8.93), we consider the particular case that 
f (ka) vanishes except in a small region dka. Decomposing our wave-functions into 
incident and scattered waves, we evaluate the total number of projectiles incident 
upon a surface element ôs of a plane perpendicular to ka. This quantity is denoted by 
& JN(ka)dka .

The incident wave associated with the projectile f(xa + r) contains as a factor 
the relative motion

Kxa + r>t) = (2n) klt + ka-xa +ka-r)]f(ka)clka. (2.8.102)

This satisfies the Schrôdinger equation

(2.8.103)

Hence there is a continuity equation of the form

dt\/'<<xa + r-0l2 + div{Re[- 2zp(xa + r,/)grad/(xa + r,/)]} = 0, (2.8.104)

the expression in curly brackets being a flux vector. The unconventional factor 2 is 
due to our normalization of xa (cf. eq. (2.1.2)). With this factor, the number of pro
jectiles f(xa + r) with r-vector in dr that pass through ds in the time interval dt takes 
the form
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2(2tt) 3dWrRe [ |dxa Jexp[- i(- k'2t + k'a-xa + k'a ■ r)]f (k'a)dk'a
ÔS

x /kaexp[i(- k2at + ka-xa + ka • r)]/T(Äa)</Äaj .
> (2.8.105)

The total number of projectiles passing through ôs at some time t is obtained from 
this expression by integrating over t and r. If we remember that

/'lka - i/(A< - All - Ai2ri(/Al</AOI</A„2, (2.8.106)

the integration can be performed explicitly with the standard theory of Fourier trans
forms. The final result is

A’(*„)  - |/(* a)|2(cos/3„)-1. (2.8.107)

Hence, according to eq. (2.8.93),

ka(Mkb) = (4^)"2J|^fta(Äft>Äa)|2Ar(Äa)Mä1£/Äa- (2.8.108)

The function |Föa/47i|2 thus transforms the number of projectiles incident per unit 
area into the number scattered into a unit angle. It is the cross section for scattering 
from channel a into channel b.

2.8.9. The optical theorem

According to eq. (2.3.65) the total intensity of the scattering from channel a 
is given by

/ = 2 JRe(/a(r), [1 - Saa]fa(r))dr. (2.8.109)

Q

With eq. (2.6.67) this reduces to

I = lim 
xa->æ

MJ dMk. da)k k2af (k'a)e ik'<

x -^aaC^a’’ e ’

(2.8.110)

where Faa is the function (2.8.1) and k'a,ka arc two vectors of length ka. From the 
form of Faa it is easily seen that

I =

+ it) - 1<(E - ie)]VaVaeik--x')f(ka)etk' r

(2.8.111)
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With the help of eqs. (2.8.5) and (2.8.7), 1 can be developed according to

1 = fdrlim 2 2 f ~ He\a(E,/;£;Xa)]| f Ÿim(wk)elk» 'r f (ka)dwkfkadE. (2.8.112) 
J £-> 0 Z = 0 m J J

Q

Now let f(ka) satisfy eq. (2.8.77) and let it vanish outside some bounded interval. 
Then each term of the series in eq. (2.8.112) lends to a limit as e lends to 0, by eq. 
(2.7.60). Also, the function glm(E,r) defined in eq. (2.8.86) is bounded uniformly 
with respect to l,m. The terms of the series in eq. (2.8.112) are all non-negative, by 
eq. (2.8.40). Therefore, since in eq. (2.8.42) the series on the left converges uniformly 
with respect to e, so does the series in eq. (2.8.112). From this it follows that the limit 
of the sum is the sum of the limits of the separate terms. In other words,

1 - fdr 2 2 f [1 - ReSaa(£,Z)]|9te(E,r)|2V£.
J I = 0 m J
()

(2.8.113)

If / (Äa) satisfies the further restriction (2.8.89), the integration over r can be per
formed with the help of eq. (2.8.88). With eqs. (2.8.36) and (2.8.37), the result is

i - n 2 en +
I = 0

1)J[1 - ReSaa(E,l)]ka1dE J |/(Äß)|2(cosßa) 1dcos/ladaa

J (ka)\2(kacos ßa) 1(ika-
(2.8.114)

By analogy with eq. (2.8.108) we may write

/ = J ImFaa(E,0)VWd* #- (2.8.115)

This shows that lmFflfl(E,(l)f“1 is the total cross section, which is thus equal to IrrÅ^1 
limes the imaginary part of the forward elastic scattering amplitude. This is a special 
form of the optical theorem discussed in section 2.3.7.

2.8.10. Discussion

In the standard treatment of one-channel potential scattering, it is shown that 
an incoming plane wave exp(iÆœ,xa) yields a radially outgoing wave which for large 
;rffl behaves asymptotically as

(2.8.116)

with some function Xaa depending only on ka and on the angle between xa and ka. 
From the asymptotic behaviour it follows that |ArftJ2 is the cross section for elastic
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scattering. If we compare the standard theory with the present formalism, we see 
that Xaa is nothing but Faa/4n. Hence the name scattering amplitude used in the 
foregoing.

Since a plane wave is not of finite norm, it cannot easily be incorporated in 
our Hilbert-space formalism. It is, of course, possible to consider superpositions of 
plane waves, i. c. wave-packets. However, the expression we found for the scattering 
intensity due to a single wave-packet is more complicated than a mere integral of 
the form

JXJ (2.8.117)

Indeed, in eqs. (2.6.71) and (2.8.74) we have multiple integrals

J^ô|Fba(Æ&,^)À(^)dcofcjF&a(Æ0,/îa)7i(Âa)c?wÂ.u. (2.8.118)

These apply to a single scattering event. What one observes experimentally is the 
cross section. This is the number of fragments emerging per unit angle per unit time, 
divided by the number incident per unit area per unit time. It thus refers to a stream 
of projectiles. One usually describes such a stream with the help of a plane wave, 
but in the present paper we use a statistical mixture of wave-packets called a beam. 
This procedure leads to the conditions (2.8.89) and (2.8.18) on the wave-function 
/’(ka) and on the interaction, respectively. If these are fulfilled, the intensity scattered 
from the beam can be evaluated in a completely straightforward manner. It yields 
an expression of the form (2.8.117). From this it then follows that lF&a/47rl2 is the 
cross section. If the theory is set up in this way, the difficulties of the standard plane
wave theory are avoided completely. In particular, there are no normalization pro
blems, nor is there any ambiguity as regards the channel concept. Also, if f (J^a) vanishes 
except in a small region dka, the beam /'(Æ(f) more closely resembles a collimated 
stream of projectiles than does the plane wave exp(iÆœ • xa). To describe a scattering 
experiment, a beam as defined here is therefore an improvement on a plane wave.

The condition (2.8.89) implies that f (ka) must vanish as cosßa = 0. It thus 
guarantees that the beam properly passes through the plane q. If f (ka) were different 
from 0 only in the neighbourhood of cosßa = 0, the beam would propagate almost 
parallel to the plane q. Since all projectiles would then have almost the same inter
action with the target, the total scattering intensity would not remain finite. Similarly, 
the scattering intensities due to the separate projectiles would add up to infinity if 
at large distances the interaction did not fall off sufficiently rapidly. Il is only if the 
interaction tends to 0 reasonably fast that projectiles with large r-values are not 
disturbed appreciably. Hence it is only under some suitable condition on Vpq that 
we may expect the integral over r of the separate scattering intensities to be convergent. 
A sufficient condition is formulated explicitly in eq. (2.8.18).

Throughout the present paper we have tried to keep the formalism mathe
matically rigorous. Il is unfortunate that this has led to tedious considerations, par- 
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ticularly as regards limits with respect to e. It must be emphasized, however, that 
every time we prove that there is a limit, the argument can be traced back to the 
lime development in a scattering system, and to the properties of the interaction be
tween scattered fragments. We thus feci that the limiting behaviour as e tends to 0 
reflects in a mathematical form what is the essence of a scattering event.

In eq. (2.7.44) the function Sba(E,l) is defined as the derivative of the limit of 
a sequence of integrals,

~ lim lim ( Sba(E',l-,E-,Xb)k'adE'. (2.8.119)

There is a similar relation for the imaginary part of the scattering amplitude, the 
definition of the real part being slightly more complicated. Now it is conceivable that 
in some, or perhaps even in many, cases we have

Sba(E>1) = Hm Hm Söa(E,/;£;Azb). (2.8.120)
8 —> 0 Xjt —> x

However, thus far we have found no evidence to this effect. On the other hand, there 
is a much more useful limiting relation. In fact, it will be shown in a sequel to the 
present paper that lor a large class of interactions there exists an analytic function 
Sba(E + fe, I ; Xb) such that

Sb<AE’h = Iim liin Sba(E + ie,l;Xb) (2.8.121)
£ —> 0 X f) —> x

for almost every E. The scattering amplitude is likewise the boundary value of an 
analytic function. In the neighbourhood of the real axis this function is sufficiently 
smooth to satisfy a dispersion relation. Also, in virtue of eq. (2.8.121), there is a 
parameter expansion for the scattering matrix which brings out the existence of re
sonances against a smoothly varying background. The present results thus make a 
starting-point for further work. A sequel to this paper will show again that there is 
an intimate connection between the limiting behaviour of scattering functions and the 
qualitative features of scattering events.
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zoek” (Z.W.O.). It was done partly at the Institute for Theoretical Physics, University 
of Copenhagen. The author is indebted to Professor L. Rosenfeld for his interest 
in this paper. The stimulating atmosphere al the Institute for Theoretical Physics is 
gratefully acknowledged. Thanks are due to F.O.M. for making the author’s stay in 
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Note added in proof

After the present paper was completed we learned that Faddeev (31, 32) has 
shown that in a three-particle system there is unitarity in the sense of eq. (2.3.35) 
under fairly mild conditions on the interaction. This result gives a partial answer to 
the problem discussed in sections 2.3.4 and 2.3.5.
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